日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)已知△ABC的三個頂點坐標分別為A(1,3)、B(3,1)、C(-1,0),求BC邊上的高所在的直線方程.
          (2)過橢圓內一點M(2,1)引一條弦,使得弦被M點平分,求此弦所在的直線方程.
          【答案】分析:(1)根據(jù)l⊥m?kl×km=-1,先求出高所在直線的斜率,進而利用點斜式即可求出;
          (2)利用“點差法”先求出弦所在直線的斜率,再利用點斜式即可求出.
          解答:解:(1)設BC邊上的高為AD(D為垂足),
          ,kBC×kAD=-1,∴kAD=-4,
          ∴直線AD的方程為y-3=-4(x-1),化為4x+y-7=0.
          (2)設要求的直線與橢圓相較于點A(x1,y1),B(x2,y2),則,
          兩式相減得=0,
          ,,,
          ,解得
          ∴直線AB為,化為x+2y-4=0.
          點評:熟練掌握兩條直線垂直與斜率的關系、點斜式及“點差法”是解題的關鍵.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知△ABC的三個頂點為A(1,-2,5),B(-1,0,1),C(3,-4,5),則邊BC上的中線長為
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知△ABC的三個頂點坐標分別為A(1,3)、B(3,1)、C(-1,0),求BC邊上的高所在的直線方程.
          (2)過橢圓
          x2
          16
          +
          y2
          4
          =1
          內一點M(2,1)引一條弦,使得弦被M點平分,求此弦所在的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知△ABC的頂點A(1,1),B(3,2),C(2,4),求△ABC的面積.
          (2)若△ABC的頂點A在直線y=x上運動,頂點B(6,8),頂點C在線段y=2x (3≤x≤5)上運動,且A、C、B三點的橫坐標成等差數(shù)列,問△ABC的面積是否存在最大值?若存在求出最大值,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖2-1-18,已知△ABC的外接圓中,D、E分別為的中點,弦DEABACF、G.求證:AF =AG.

          圖2-1-18

          查看答案和解析>>

          同步練習冊答案