日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x+
          a
          x
          有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
          a
          ]上是減函數(shù),在[
          a
          ,+∞)上是增函數(shù).
          (1)如果函數(shù)y=x+
          2b
          x
          (x>0)在(0,4]上是減函數(shù),在[4,+∞)是增函數(shù),求b的值;
          (2)證明:函數(shù)f(x)=x+
          a
          x
          (常數(shù)a>0)在(0,
          a
          ]上是減函數(shù);
          (3)設(shè)常數(shù)c∈(1,9),求函數(shù)f(x)=x+
          c
          x
          在x∈[1,3]上的最小值和最大值.
          分析:(1)根據(jù)題設(shè)條件知
          2b
          =4,由此可知求出b值;
          (2)由已知中函數(shù)的解析式,求出函數(shù)的導(dǎo)函數(shù),判斷導(dǎo)數(shù)在(0,
          a
          ]上的符號,進(jìn)而可由導(dǎo)數(shù)符號與函數(shù)單調(diào)性的關(guān)系得到答案.
          (3)由常數(shù)c∈(1,9),可得
          c
          的范圍,根據(jù)已知可得當(dāng)x=
          c
          時,函數(shù)取最小值,比較f(1)與f(3)的大小,可得函數(shù)的最大值.
          解答:解:(1)∵函數(shù)f(x)=x+
          a
          x
          在(0,
          a
          ]上是減函數(shù),在[
          a
          ,+∞)上是增函數(shù)
          且函數(shù)y=x+
          2b
          x
          (x>0)在(0,4]上是減函數(shù),在[4,+∞)是增函數(shù),
          2b
          =4
          解得b=4
          證明:(2)∵函數(shù)f(x)=x+
          a
          x
          (常數(shù)a>0)
          ∴f(x)=1-
          a
          x2

          當(dāng)x∈(0,
          a
          ]時,x2≤a
          a
          x2
          ≥1,
          此時f(x)=1-
          a
          x2
          ≤0恒成立
          故函數(shù)f(x)=x+
          a
          x
          (常數(shù)a>0)在(0,
          a
          ]上是減函數(shù)
          (3)當(dāng)c∈(1,9)時,
          c
          ∈(1,3)
          故當(dāng)x=
          c
          時,函數(shù)取最小值2
          c

          而f(1)-f(3)=
          2(c-3)
          3

          故當(dāng)1<c≤3時,函數(shù)的最大值是f(3)=3+
          c
          3

          當(dāng)3<c<9時,函數(shù)的最大值是f(1)=1+c
          點評:本題考查的知識點是函數(shù)的最值及其意義,函數(shù)單調(diào)性的性質(zhì),熟練掌握對勾函數(shù)f(x)=x+
          a
          x
          (常數(shù)a>0)的圖象和性質(zhì)是解答本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案