已知、
分別為橢圓
:
的上、下焦點,其中
也是拋物線
:
的焦點,點
是
與
在第二象限的交點,且
。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(1,3)和圓
:
,過點
的動直線
與圓
相交于不同的兩點
,在線段
取一點
,滿足:
,
(
且
)。
求證:點總在某定直線上。
(Ⅰ)(Ⅱ)設(shè)
由
可得
由
可得
⑤×⑦得:
,⑥×⑧得:
,兩式相加得
又點A,B在圓
上,且
,
所以,
即
,所以點Q總在定直線
上
【解析】
試題分析:(1)由:
知
(0,1),設(shè)
,因M在拋物線
上,故
① 又
,則
②,
由①②解得 (3分)
橢圓的兩個焦點
(0,1),
,點M在橢圓上,有橢圓定義可得
∴又
,∴
,橢圓
的方程為:
(6分)
(2)設(shè),
由可得:
,
即 (9分)
由可得:
,
即
⑤×⑦得:
⑥×⑧得: (10分)
兩式相加得 (11分)
又點A,B在圓上,且
,
所以,
即,所以點Q總在定直線
上 (12分)
考點:橢圓拋物線方程性質(zhì)及直線與圓相交
點評:解題時充分利用拋物線的定義:拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,能使解題過程簡化;第二問中的向量關(guān)系常轉(zhuǎn)化為點的坐標(biāo)關(guān)系,證明點在定直線上的主要思路是驗證點的坐標(biāo)始終滿足于某直線方程
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
BF1 |
BF2 |
1 |
2 |
F1F22 |
A、(0,
| ||||
B、(0,
| ||||
C、(0,
| ||||
D、(
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東深圳第二高級中學(xué)高三上學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知、
分別為橢圓
的兩個焦點,點
為其短軸的一個端點,若
為等邊三角形,則該橢圓的離心率為(
)
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分15分).
已知、
分別為橢圓
:
的
上、下焦點,其中也是拋物線
:
的焦點,
點是
與
在第二象限的交點,且
。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點P(1,3)和圓:
,過點P的動直線
與圓
相交于不同的兩點A,B,在線段AB取一點Q,滿足:
,
(
且
)。求證:點Q總在某定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三12月月考文科數(shù)學(xué)試卷 題型:選擇題
已知、
分別為橢圓C:
的左、右焦點,點A∈C且
,則
的面積為( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com