日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),(其中,),且函數(shù)的圖象在點(diǎn)處的切線與函數(shù)的圖象在點(diǎn)處的切線重合.
          (Ⅰ)求實數(shù)a,b的值;
          (Ⅱ)若,滿足,求實數(shù)的取值范圍;
          (Ⅲ)若,試探究的大小,并說明你的理由.

          (Ⅰ);(Ⅱ);(Ⅲ).

          解析試題分析:(Ⅰ)先求出在點(diǎn)處切線方程為,再求出在點(diǎn)處切線方程為,比較兩方程的系數(shù)即可得,;(Ⅱ)根據(jù)題意可轉(zhuǎn)化成上有解,令,只需,分類討論可求得實數(shù)m的取值范圍是;
          (Ⅲ)令,再證函數(shù)在區(qū)間上單調(diào)遞增,當(dāng)時,恒成立,即可得對任意,有,再證即可得證.
          試題解析:(Ⅰ)∵,∴,則在點(diǎn)處切線的斜率,切點(diǎn),則在點(diǎn)處切線方程為
          ,∴,則在點(diǎn)處切線的斜率,切點(diǎn),則在點(diǎn)處切線方程為
          解得,. 4分
          (Ⅱ)由,故上有解,
          ,只需.  6分
          ①當(dāng)時,,所以; 7分
          ②當(dāng)時,∵,
          ,∴,,∴,
          ,即函數(shù)在區(qū)間上單調(diào)遞減,
          所以,此時
          綜合①②得實數(shù)m的取值范圍是.    9分
          (Ⅲ)令,
          ,則上恒成立,
          ∴當(dāng)時,成立,∴上恒成立,
          故函數(shù)在區(qū)間上單調(diào)遞增,∴當(dāng)時,恒成立,
          故對于任意

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
          (2)若在區(qū)間上是減函數(shù),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)試問的值是否為定值?若是,求出該定值;若不是,請說明理由;
          (2)定義,其中,求
          (3)在(2)的條件下,令.若不等式恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;
          (Ⅱ)設(shè),若在上至少存在一點(diǎn),使得成立,求的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),其中為正實數(shù),的一個極值點(diǎn).
          (Ⅰ)求的值;
          (Ⅱ)當(dāng)時,求函數(shù)上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)是定義在的可導(dǎo)函數(shù),且不恒為0,記.若對定義域內(nèi)的每一個,總有,則稱為“階負(fù)函數(shù)”;若對定義域內(nèi)的每一個,總有,
          則稱為“階不減函數(shù)”(為函數(shù)的導(dǎo)函數(shù)).
          (1)若既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)的取值范圍;
          (2)對任給的“2階不減函數(shù)”,如果存在常數(shù),使得恒成立,試判斷是否為“2階負(fù)函數(shù)”?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),
          (Ⅰ)當(dāng)a=1時,若曲線y=f(x)在點(diǎn)M (x0,f(x0))處的切線與曲線y=g(x)在點(diǎn)P (x0, g(x0))處的切線平行,求實數(shù)x0的值;
          (II)若(0,e],都有f(x)≥g(x)+,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)),其圖像在點(diǎn)(1,)處的切線方程為.
          (1)求,的值;
          (2)求函數(shù)的單調(diào)區(qū)間和極值;
          (3)求函數(shù)在區(qū)間[-2,5]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)的圖象在點(diǎn)處的切線斜率為
          (Ⅰ)求實數(shù)的值;
          (Ⅱ)判斷方程根的個數(shù),證明你的結(jié)論;
          (Ⅲ)探究:是否存在這樣的點(diǎn),使得曲線在該點(diǎn)附近的左、右的兩部分分別位于曲線在該點(diǎn)處切線的兩側(cè)?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>