【題目】前幾年隨著網(wǎng)購的普及,線下零售遭遇挑戰(zhàn),但隨著新零售模式的不斷出現(xiàn),零售行業(yè)近幾年呈現(xiàn)增長趨勢,下表為年中國百貨零售業(yè)銷售額(單位:億元,數(shù)據(jù)經(jīng)過處理,
分別對應
):
年份代碼 | 1 | 2 | 3 | 4 |
銷售額 | 95 | 165 | 230 | 310 |
(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合與
的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于
的回歸方程,并預測2018年我國百貨零售業(yè)銷售額;
(3)從年這4年的百貨零售業(yè)銷售額及2018年預測銷售額這5個數(shù)據(jù)中任取2個數(shù)據(jù),求這2個數(shù)據(jù)之差的絕對值大于200億元的概率.
參考數(shù)據(jù):
,
參考公式:相關(guān)系數(shù),回歸方程
中斜率和截距的最小二乘估計公式分別為
,
.
【答案】(1)答案見解析;(2)回歸方程為.預測2018年我國百貨零售業(yè)銷售額為377.5億元;(3)
.
【解析】試題分析: 根據(jù)表中的數(shù)據(jù)和參考數(shù)據(jù),分別代入公式求出相對應的參數(shù),根據(jù)公式
,求出
的值,當
的值越接近于
,說明其相關(guān)關(guān)系越強;
根據(jù)所給公式分別求出線性回歸方程中的
,
的值,然后可以求出
關(guān)于
的回歸方程為
,將
年對應的
代入回歸方程即可預測2018年我國百貨零售業(yè)銷售額;
求出從這
個數(shù)據(jù)中任取
個數(shù)據(jù)的所有可能性,并求得所取
個數(shù)據(jù)之差的絕對值大于
億元的可能性,即可求得其概率
解析:(1)由表中的數(shù)據(jù)和參考數(shù)據(jù)得
,
,
,
∴.
因為與
的相關(guān)系數(shù)近似為0.999,說明
與
的線性相關(guān)程度相當高,從而可以用線性回歸模型擬合
與
的關(guān)系.
(2)由及(1)得
,
,
所以關(guān)于
的回歸方程為
.
將2018年對應的代入回歸方程得
.
所以預測2018年我國百貨零售業(yè)銷售額為377.5億元.
(3)從這5個數(shù)據(jù)中任取2個數(shù)據(jù),結(jié)果有: ,
共 10個.所取2個數(shù)據(jù)之差的絕對值大于200億元的結(jié)果有:
,共3個,所以所求概率
.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是BC、CD的中點,G是EF的中點,現(xiàn)在沿AE、AF及EF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有( 。
A. 所在平面B.
所在平面
C. 所在平面D.
所在平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P–ABCD中,底面ABCD是邊長為6的正方形,PD平面ABCD,PD=8.
(1) 求PB與平面ABCD所成角的大;
(2) 求異面直線PB與DC所成角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的離心率為
,長半軸長為短軸長的b倍,A,B分別為橢圓C的上、下頂點,點
.
求橢圓C的方程;
若直線MA,MB與橢圓C的另一交點分別為P,Q,證明:直線PQ過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體的棱長為1,線段
上有兩個動點
,且
,現(xiàn)有如下四個結(jié)論:
;
平面
;
三棱錐
的體積為定值;
異面直線
所成的角為定值,
其中正確結(jié)論的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某物流公司欲將一批海產(chǎn)品從A地運往B地,現(xiàn)有汽車、火車、飛機三種運輸工具可供選擇,這三種工具的主要參考數(shù)據(jù)如下:
運輸工具 | 途中速度( | 途中費用(元/ | 裝卸時間( | 裝卸費用(元/ |
汽車 | 50 | 80 | 2 | 200 |
火車 | 100 | 40 | 3 | 400 |
飛機 | 200 | 200 | 3 | 800 |
若這批海產(chǎn)品在運輸過程中的損耗為300元/,問采用哪種運輸方式比較好,即運輸過程中的費用與損耗之和最小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間
的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中.
(1)根據(jù)散點圖判斷,與
哪一個更適宜作燒水時間
關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)
的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)與單位時間內(nèi)煤氣輸出量
成正比,那么
為多少時,燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘估計分別為
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com