若sin(-α)=-
,sin(
+β)=
,其中
<α<
,
<β<
,求 角(α+β)的值.
α+β=。
解析試題分析:先由<α<
,
<β<
可知-
<
-α<0,
<
+β<
,
從而可由sin(-α),sin(
+β)求出cos(
-α),cos(
+β),
然后再利用cos(α+β)=cos[(+β)-(
-α)]=cos(
+β)·cos(
-α)+sin(
+β)·sin(
-α)代入求值,再根據(jù)
<α+β<π,從而確定α+β的值.
∵<α<
,-
<
-α<0,
<β<
,
<
+β<
(3分)
由已知可得cos(-α)=
,cos(
+β)=-
則cos(α+β)=cos[(+β)-(
-α)]=cos(
+β)·cos(
-α)+sin(
+β)·sin(
-α)=-
×
+
×(-
)=-
,…………(9分)
∵<α+β<π ∴α+β=
…………(12分).
考點(diǎn):給值求角,兩角差的余弦公式.
點(diǎn)評(píng):解本小題首先要利用同角的三角函數(shù)的平方關(guān)系求出余角的值,一定要把角的范圍搞清楚,然后再注意利用α+β=(+β)-(
-α)把未知角用已知角表示出來(lái),借助兩角差的余弦公式求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分) ,其中
.
(1)若,求函數(shù)f(x)的最小正周期;
(2)若滿(mǎn)足
,且
,求函數(shù)f(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知函數(shù)
,
.
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)求函數(shù)在區(qū)間
上的最小值和最大值,并求出取得最值時(shí)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題共12分)已知向量,
,函數(shù)
.
(Ⅰ)求函數(shù)的最小正周期和最大值;
(Ⅱ)求函數(shù)在區(qū)間
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)設(shè)函數(shù)的圖象經(jīng)過(guò)點(diǎn)
.
(1)求的解析式,并求函數(shù)的最小正周期.
(2)若且
,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分,每小題6分)
(1)若為基底向量,且
若A、B、D三點(diǎn)共線(xiàn),求實(shí)數(shù)k的值;
(2)用“五點(diǎn)作圖法”在已給坐標(biāo)系中畫(huà)出函數(shù)一個(gè)周期內(nèi)的簡(jiǎn)圖,并指出該函數(shù)圖象是由函數(shù)
的圖象進(jìn)行怎樣的變換而得到的?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com