日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐中,側(cè)面底面,,,,分別為的中點(diǎn).

          1)求證:平面

          2)求二面角的余弦值;

          3)在線段上是否存在一點(diǎn),使與平面所成角的正弦值為,若存在求出的長(zhǎng),若不存在說(shuō)明理由.

          【答案】1)證明見(jiàn)解析;(23)存在;

          【解析】

          1)取中點(diǎn),可證明,從而證明,進(jìn)而可證明平面;(2)分別以軸建立空間直角坐標(biāo)系,求出各個(gè)點(diǎn)的坐標(biāo),利用向量法可求出二面角的余弦值;(3)假設(shè)存在點(diǎn),利用向量法求與平面所成角的正弦值為時(shí)點(diǎn)的坐標(biāo),判斷是否在線段上,進(jìn)而求出的長(zhǎng).

          1)證明:取中點(diǎn),連接,

          ,即,

          所以為平行四邊形,平面,平面,因此平面.

          2)解:因?yàn)?/span>,的中點(diǎn),所以,又因?yàn)閭?cè)面底面且交線為,所以平面,

          分別以軸建立空間直角坐標(biāo)系.

          ,

          平面的法向量,

          ,,設(shè)平面的法向量,

          ,得.

          所以,因此二面角的余弦值為.

          3)解:設(shè),,

          平面的法向量,

          所以,

          解得(舍),所以存在,

          所以.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載:芻甍者,下有袤有廣,而上有袤無(wú)廣.芻,草也.甍,屋蓋也.”今有底面為正方形的屋脊形狀的多面體(如圖所示),下底面是邊長(zhǎng)為2的正方形,上棱EF//平面ABCD,EF與平面ABCD的距離為2,該芻甍的體積為(

          A.6B.C.D.12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱錐中,四邊形是菱形,,,E上一點(diǎn),且,設(shè).

          1)證明:平面;

          2)若,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓

          (1)若橢圓的離心率為,求的值;

          (2)若過(guò)點(diǎn)任作一條直線與橢圓交于不同的兩點(diǎn),在軸上是否存在點(diǎn),使得, 若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為實(shí)現(xiàn)2020年全面建設(shè)小康社會(huì),某地進(jìn)行產(chǎn)業(yè)的升級(jí)改造.經(jīng)市場(chǎng)調(diào)研和科學(xué)研判,準(zhǔn)備大規(guī)模生產(chǎn)某高科技產(chǎn)品的一個(gè)核心部件,目前只有甲、乙兩種設(shè)備可以獨(dú)立生產(chǎn)該部件.如圖是從甲設(shè)備生產(chǎn)的部件中隨機(jī)抽取400件,對(duì)其核心部件的尺寸x,進(jìn)行統(tǒng)計(jì)整理的頻率分布直方圖.

          根據(jù)行業(yè)質(zhì)量標(biāo)準(zhǔn)規(guī)定,該核心部件尺寸x滿(mǎn)足:|x12|≤1為一級(jí)品,1<|x12|≤2為二級(jí)品,|x12|>2為三級(jí)品.

          (Ⅰ)現(xiàn)根據(jù)頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產(chǎn)品,再?gòu)乃槿〉?/span>40件產(chǎn)品中,抽取2件尺寸x∈[12,15]的產(chǎn)品,記ξ為這2件產(chǎn)品中尺寸x∈[14,15]的產(chǎn)品個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望;

          (Ⅱ)將甲設(shè)備生產(chǎn)的產(chǎn)品成箱包裝出售時(shí),需要進(jìn)行檢驗(yàn).已知每箱有100件產(chǎn)品,每件產(chǎn)品的檢驗(yàn)費(fèi)用為50.檢驗(yàn)規(guī)定:若檢驗(yàn)出三級(jí)品需更換為一級(jí)或二級(jí)品;若不檢驗(yàn),讓三級(jí)品進(jìn)入買(mǎi)家,廠家需向買(mǎi)家每件支付200元補(bǔ)償.現(xiàn)從一箱產(chǎn)品中隨機(jī)抽檢了10件,結(jié)果發(fā)現(xiàn)有1件三級(jí)品.若將甲設(shè)備的樣本頻率作為總體的慨率,以廠家支付費(fèi)用作為決策依據(jù),問(wèn)是否對(duì)該箱中剩余產(chǎn)品進(jìn)行一一檢驗(yàn)?請(qǐng)說(shuō)明理由;

          (Ⅲ)為加大升級(jí)力度,廠家需增購(gòu)設(shè)備.已知這種產(chǎn)品的利潤(rùn)如下:一級(jí)品的利潤(rùn)為500元/件;二級(jí)品的利潤(rùn)為400元/件;三級(jí)品的利潤(rùn)為200元/件.乙種設(shè)備產(chǎn)品中一、二、三級(jí)品的概率分別是,,.若將甲設(shè)備的樣本頻率作為總體的概率,以廠家的利潤(rùn)作為決策依據(jù).應(yīng)選購(gòu)哪種設(shè)備?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】學(xué)生考試中答對(duì)但得不了滿(mǎn)分的原因多為答題不規(guī)范,具體表現(xiàn)為:解題結(jié)果正確,無(wú)明顯推理錯(cuò)誤,但語(yǔ)言不規(guī)范、缺少必要文字說(shuō)明、卷面字跡不清、得分要點(diǎn)缺失等,記此類(lèi)解答為“類(lèi)解答”為評(píng)估此類(lèi)解答導(dǎo)致的失分情況,某市教研室做了項(xiàng)試驗(yàn):從某次考試的數(shù)學(xué)試卷中隨機(jī)抽取若干屬于“類(lèi)解答”的題目,掃描后由近百名數(shù)學(xué)老師集體評(píng)閱,統(tǒng)計(jì)發(fā)現(xiàn),滿(mǎn)分12分的題,閱卷老師所評(píng)分?jǐn)?shù)及各分?jǐn)?shù)所占比例大約如下表:

          教師評(píng)分(滿(mǎn)分12分)

          11

          10

          9

          各分?jǐn)?shù)所占比例

          某次數(shù)學(xué)考試試卷評(píng)閱采用“雙評(píng)+仲裁”的方式,規(guī)則如下:兩名老師獨(dú)立評(píng)分,稱(chēng)為一評(píng)和二評(píng),當(dāng)兩者所評(píng)分?jǐn)?shù)之差的絕對(duì)值小于等于1分時(shí),取兩者平均分為該題得分;當(dāng)兩者所評(píng)分?jǐn)?shù)之差的絕對(duì)值大于1分時(shí),再由第三位老師評(píng)分,稱(chēng)之為仲裁,取仲裁分?jǐn)?shù)和一、二評(píng)中與之接近的分?jǐn)?shù)的平均分為該題得分;當(dāng)一、二評(píng)分?jǐn)?shù)和仲裁分?jǐn)?shù)差值的絕對(duì)值相同時(shí),取仲裁分?jǐn)?shù)和前兩評(píng)中較高的分?jǐn)?shù)的平均分為該題得分.(假設(shè)本次考試閱卷老師對(duì)滿(mǎn)分為12分的題目中的“類(lèi)解答”所評(píng)分?jǐn)?shù)及比例均如上表所示,比例視為概率,且一、二評(píng)與仲裁三位老師評(píng)分互不影響).

          1)本次數(shù)學(xué)考試中甲同學(xué)某題(滿(mǎn)分12分)的解答屬于“類(lèi)解答”,求甲同學(xué)此題得分的分布列及數(shù)學(xué)期望;

          2)本次數(shù)學(xué)考試有6個(gè)解答題,每題滿(mǎn)分12分,同學(xué)乙6個(gè)題的解答均為“類(lèi)解答”.

          ①記乙同學(xué)6個(gè)題得分為的題目個(gè)數(shù)為計(jì)算事件的概率.

          ②同學(xué)丙的前四題均為滿(mǎn)分,第5題為“類(lèi)解答”,第6題得8.以乙、丙兩位同學(xué)解答題總分均值為依據(jù),談?wù)勀銓?duì)“類(lèi)解答”的認(rèn)識(shí).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】橢圓規(guī)是用來(lái)畫(huà)橢圓的一種器械,它的構(gòu)造如圖所示,在一個(gè)十字形的金屬板上有兩條互相垂直的導(dǎo)槽,在直尺上有兩個(gè)固定的滑塊A,B,它們可分別在縱槽和橫槽中滑動(dòng),在直尺上的點(diǎn)M處用套管裝上鉛筆,使直尺轉(zhuǎn)動(dòng)一周,則點(diǎn)M的軌跡C是一個(gè)橢圓,其中|MA|2,|MB|1,如圖,以?xún)蓷l導(dǎo)槽的交點(diǎn)為原點(diǎn)O,橫槽所在直線為x軸,建立直角坐標(biāo)系.

          1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ0≤φ),用表示點(diǎn)M的坐標(biāo),并求出C的普通方程;

          2)已知過(guò)C的左焦點(diǎn)F,且傾斜角為α0≤α)的直線l1C交于D,E兩點(diǎn),過(guò)點(diǎn)F且垂直于l1的直線l2C交于G,H兩點(diǎn).當(dāng),|GH|,依次成等差數(shù)列時(shí),求直線l2的普通方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為迎接年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開(kāi)展了冰雪答題王冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了名學(xué)生,將他們的比賽成績(jī)(滿(mǎn)分為分)分為組:,,,,得到如圖所示的頻率分布直方圖.

          1)求的值;

          2)記表示事件從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于,估計(jì)的概率;

          3)在抽取的名學(xué)生中,規(guī)定:比賽成績(jī)不低于分為優(yōu)秀,比賽成績(jī)低于分為非優(yōu)秀.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為比賽成績(jī)是否優(yōu)秀與性別有關(guān)

          優(yōu)秀

          非優(yōu)秀

          合計(jì)

          男生

          女生

          合計(jì)

          參考公式及數(shù)據(jù):,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知四棱錐中,平面平面,,,,為棱上一動(dòng)點(diǎn),點(diǎn)的中點(diǎn).

          1)求證:;

          2)若,問(wèn)是否存在點(diǎn)E,使得二面角的余弦值為?若存在,求出點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案