【題目】中國國際智能產(chǎn)業(yè)博覽會(智博會)每年在重慶市舉辦一屆,每年參加服務(wù)的志愿者分“嘉賓”、“法醫(yī)”等若干小組.2018年底,來自重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)的500名學(xué)生在重慶科技館多功能廳參加了“志愿者培訓(xùn)”,如圖是四所大學(xué)參加培訓(xùn)人數(shù)的不完整條形統(tǒng)計圖,現(xiàn)用分層抽樣的方法從中抽出50人作為2019年中國國際智博會服務(wù)的志愿者.
(1)若“嘉賓”小組需要2名志愿者,求這2人分別來自不同大學(xué)的概率(結(jié)果用分數(shù)表示).
(2)若法醫(yī)小組的3名志愿者只能從重慶醫(yī)科大學(xué)或西南政法大學(xué)抽出,用5表示抽出志愿者來自重慶醫(yī)科大學(xué)的人數(shù),求的分布列.
【答案】(1)(2)見解析
【解析】
(1)由分層抽樣的性質(zhì)得出重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)志愿者分別為15,20,10,5人,用減去2人都在同一所大學(xué)的概率,即可得出這2人分別來自不同大學(xué)的概率;
(2)得出的可能取值,并算出對應(yīng)的概率,即可得出
的分布列.
解:(1)2019年中國國際智博會服務(wù)的志愿者中重慶醫(yī)科大學(xué)的人數(shù)為人
則重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)志愿者分別為15,20,10,5人.
所以.
(2)的可能取值為:0,1,2,3
則分布列為:
0 | 1 | 2 | 3 | |
P |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年遼寧省正式實施高考改革.新高考模式下,學(xué)生將根據(jù)自己的興趣、愛好、學(xué)科特長和高校提供的“選考科目要求”進行選課.這樣學(xué)生既能尊重自己愛好、特長做好生涯規(guī)劃,又能發(fā)揮學(xué)科優(yōu)勢,進而在高考中獲得更好的成績和實現(xiàn)自己的理想.考改實施后,學(xué)生將在高二年級將面臨著的選課模式,其中“3”是指語、數(shù)、外三科必學(xué)內(nèi)容,“1”是指在物理和歷史中選擇一科學(xué)習(xí),“2”是指在化學(xué)、生物、地理、政治四科中任選兩科學(xué)習(xí).某校為了更好的了解學(xué)生對“1”的選課情況,學(xué)校抽取了部分學(xué)生對選課意愿進行調(diào)查,依據(jù)調(diào)查結(jié)果制作出如下兩個等高堆積條形圖:根據(jù)這兩幅圖中的信息,下列哪個統(tǒng)計結(jié)論是不正確的( )
A.樣本中的女生數(shù)量多于男生數(shù)量
B.樣本中有學(xué)物理意愿的學(xué)生數(shù)量多于有學(xué)歷史意愿的學(xué)生數(shù)量
C.樣本中的男生偏愛物理
D.樣本中的女生偏愛歷史
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為
,
是橢圓上關(guān)于原點
對稱的兩個動點,當(dāng)點
的坐標(biāo)為
時,
的周長恰為
.
(1)求橢圓的方程;
(2)過點作直線
交橢圓于
兩點,且
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“工資條里顯紅利,個稅新政人民心”.隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段.2019年1月1日實施的個稅新政主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應(yīng)納稅所得額(含稅)=收入-個稅起征點-專項附加扣除;(3)專項附加扣除包括住房、子女教育和贍養(yǎng)老人等.
新舊個稅政策下每月應(yīng)納稅所得額(含稅)計算方法及其對應(yīng)的稅率表如下:
舊個稅稅率表(個稅起征點3500元) | 新個稅稅率表(個稅起征點5000元) | |||
繳稅級數(shù) | 每月應(yīng)納稅所得額(含稅)=收入-個稅起征點 | 稅率(%) | 每月應(yīng)納稅所得額(含稅)=收入-個稅起征點-專項附加扣除 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元部分 | 10 | 超過3000元至12000元部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 超過12000元至25000元的部分 | 20 |
4 | 超過9000元至35000元的部分 | 25 | 超過25000元至35000元的部分 | 25 |
5 | 超過35000元至55000元部分 | 30 | 超過35000元至55000元部分 | 30 |
··· | ··· | ··· | ··· | ··· |
隨機抽取某市1000名同一收入層級的從業(yè)者的相關(guān)資料,經(jīng)統(tǒng)計分析,預(yù)估他們2019年的人均月收入24000元.統(tǒng)計資料還表明,他們均符合住房專項扣除;同時,他們每人至多只有一個符合子女教育扣除的孩子,并且他們之中既不符合子女教育扣除又不符合贍養(yǎng)老人扣除、只符合子女教育扣除但不符合贍養(yǎng)老人扣除、只符合贍養(yǎng)老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合贍養(yǎng)老人扣除的人數(shù)之比是2:1:1:1;此外,他們均不符合其他專項附加扣除.新個稅政策下該市的專項附加扣除標(biāo)準(zhǔn)為:住房1000元/月,子女教育每孩1000元/月,贍養(yǎng)老人2000元/月等。
假設(shè)該市該收入層級的從業(yè)者都獨自享受專項附加扣除,將預(yù)估的該市該收入層級的
從業(yè)者的人均月收入視為其個人月收入.根據(jù)樣本估計總體的思想,解決如下問題:
(1)設(shè)該市該收入層級的從業(yè)者2019年月繳個稅為
元,求
的分布列和期望;
(2)根據(jù)新舊個稅方案,估計從2019年1月開始,經(jīng)過多少個月,該市該收入層級的從業(yè)者各月少繳交的個稅之和就超過2019年的月收入?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓
切于點
,與圓
交于點
,圓
在點
處的切線交于點
,
為坐標(biāo)原點,則
的面積的最大值為( )
A.B.2C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列,定義“
變換”:
將數(shù)列
變換成數(shù)列
,其中
,且
,這種“
變換”記作
.繼續(xù)對數(shù)列
進行“
變換”,得到數(shù)列
,依此類推,當(dāng)?shù)玫降臄?shù)列各項均為
時變換結(jié)束.
(1)試問和
經(jīng)過不斷的“
變換”能否結(jié)束?若能,請依次寫出經(jīng)過“
變換”得到的各數(shù)列;若不能,說明理由;
(2)求經(jīng)過有限次“
變換”后能夠結(jié)束的充要條件;
(3)證明:一定能經(jīng)過有限次“
變換”后結(jié)束.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面平面
,四邊形
和
都是邊長為2的正方形,點
,
分別是
,
的中點,二面角
的大小為60°.
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以原點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為(
,a為常數(shù))),過點
、傾斜角為
的直線
的參數(shù)方程滿足
,(
為參數(shù)).
(1)求曲線C的普通方程和直線的參數(shù)方程;
(2)若直線與曲線C相交于A、B兩點(點P在A、B之間),且
,求
和
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com