【題目】某公司為了提高利潤,從2012年至2018年每年對生產(chǎn)環(huán)節(jié)的改進進行投資,投資金額與年利潤增長的數(shù)據(jù)如下表:
年 份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
投資金額(萬元) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利潤增長(萬元) | 6.0 | 7.0 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
(1)請用最小二乘法求出y關(guān)于x的回歸直線方程;如果2019年該公司計劃對生產(chǎn)環(huán)節(jié)的改進的投資金額是8萬元,估計該公司在該年的年利潤增長是多少?(結(jié)果保留2位小數(shù))
(2)現(xiàn)從2012—2018年這7年中抽取2年進行調(diào)查,記=年利潤增長-投資金額,求這兩年都是
>2(萬元)的概率.
參考公式:回歸方程中,
【答案】(1),11.43;(2)
【解析】
(1)由題意計算平均數(shù)和回歸系數(shù),寫出回歸直線方程,利用方程計算x=8時的值即可;
(2)設(shè)2012年--2018年這7年分別定為1,2,3,4,5,6,7;則由題意列舉出所有總的基本事件,找到符合條件的個數(shù),計算概率即可.
(1),
,
,
∴,
,
那么回歸直線方程為:
將代入方程得
即估計該公司在該年的年利潤增長大約為11.43萬元.
(2)由題意可知,
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
1.5 | 2 | 1.9 | 2.1 | 2.4 | 2.6 | 3.6 |
設(shè)2012年--2018年這7年分別定為1,2,3,4,5,6,7;則總基本事件為:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7),共有21種結(jié)果,
選取的兩年都是萬元的情況為:(4,5),(4,6),(4,7),(5,6),(5,7),(6,7),共6種,所以選取的兩年都是
萬元的概率
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有4家直營店,
,
,
,現(xiàn)需將6箱貨物運送至直營店進行銷售,各直營店出售該貨物以往所得利潤統(tǒng)計如下表所示.根據(jù)此表,該公司獲得最大總利潤的運送方式有
A. 種 B.
種 C.
種 D.
種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線
在點
處的切線方程為
.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線
和直線
所圍成的三角形的面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知動點P與兩定點F1(﹣1,0)、F2(1,0)的連線的斜率之積為,求動點P的軌跡方程.
(2)已知雙曲線的漸近線方程為y=±x,且與橢圓
1有公共焦點,求此雙曲線的標準方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線C的參數(shù)方程為
(其中
為參數(shù)),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系中,直線
的極坐標方程為
.
(Ⅰ)求C的普通方程和直線的傾斜角;
(Ⅱ)設(shè)點(0,2),
和
交于
兩點,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為自然對數(shù)的底數(shù)).
(1)若,求函數(shù)
的單調(diào)區(qū)間;
(2)若,且方程
在
內(nèi)有解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心在直線
:
上,與直線
:
相切,且截直線
:
所得弦長為6
(Ⅰ)求圓的方程
(Ⅱ)過點是否存在直線
,使以
被圓
截得弦
為直徑的圓經(jīng)過原點?若存在,寫出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形,
,
,
和
是兩個邊長為2的正三角形,
,
為
的中點,
為
的中點.
(1)證明:平面
.
(2)在線段上是否存在一點
,使直線
與平面
所成角的正弦值為
?若存在,求出點
的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知(sinB+sinC)(b﹣c)=(sinA+sinC)a.
(1)求B;
(2)已知b=4,△ABC的面積為,求△ABC的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com