日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在直角坐標(biāo)系xOy,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,C的極坐標(biāo)方程為ρ=4cos θ.

          (1)求出圓C的直角坐標(biāo)方程;

          (2)已知圓Cx軸相交于AB兩點(diǎn),直線ly=2x關(guān)于點(diǎn)M(0,m)(m≠0)對(duì)稱的直線為l′.若直線l上存在點(diǎn)P使得∠APB=90°,求實(shí)數(shù)m的最大值.

          【答案】(1) x2y2-4x=0. (2) -2.

          【解析】

          (1)由ρ=4cosθ得ρ2=4ρcosθ,利用互化公式可得圓C的普通方程與標(biāo)準(zhǔn)方程.

          (2)l的方程為y=2x+2m,而AB為圓C的直徑,故直線l上存在點(diǎn)P使得APB=90°的充要條件是直線l與圓C有公共點(diǎn),根據(jù)點(diǎn)到直線的距離公式即可得出.

          (1)ρ=4cos θρ2=4ρcos θ

          x2y2-4x=0,

          故圓C的直角坐標(biāo)方程為x2y2-4x=0.

          (2)ly=2x關(guān)于點(diǎn)M(0,m)對(duì)稱的直線l的方程為y=2x+2m,而AB為圓C的直徑,故直線l上存在點(diǎn)P使得∠APB=90°的充要條件是直線l與圓C有公共點(diǎn),

          ≤2,解得-2-m-2,于是,實(shí)數(shù)m的最大值為-2.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列命題中不正確的是( )

          A. 平面平面,一條直線平行于平面,則一定平行于平面

          B. 平面平面,則內(nèi)的任意一條直線都平行于平面

          C. 一個(gè)三角形有兩條邊所在的直線分別平行于一個(gè)平面,那么該三角形所在的平面與這個(gè)平面平行

          D. 分別在兩個(gè)平行平面內(nèi)的兩條直線只能是平行直線或異面直線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=alnx(a>0),e為自然對(duì)數(shù)的底數(shù).
          (Ⅰ)若過點(diǎn)A(2,f(2))的切線斜率為2,求實(shí)數(shù)a的值;
          (Ⅱ)當(dāng)x>0時(shí),求證:f(x)≥a(1﹣);
          (Ⅲ)在區(qū)間(1,e)上>1恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)是兩個(gè)非零向量,則下列哪個(gè)描述是正確的( 。
          A.若|+|=||﹣||,則
          B.若 , 則|+|=||﹣||
          C.若|+|=||﹣||,則存在實(shí)數(shù)λ使得=
          D.若存在實(shí)數(shù)λ使得= , 則|+|=||﹣||

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在.

          1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;

          2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線C的極坐標(biāo)方程是ρ=1,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)).
          (1)寫出直線l與曲線C的直角坐標(biāo)方程;
          (2)設(shè)曲線C經(jīng)過伸縮變換得到曲線C′,設(shè)曲線C′上任一點(diǎn)為M(x,y),求x+2y的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.則實(shí)數(shù)m的取值范圍為(
          A.[﹣2,2]
          B.[2,+∞)
          C.[0,+∞)
          D.(﹣∞,﹣2]∪[2,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】觀察下列等式:

          按此規(guī)律,第個(gè)等式可為__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是cm2 , 體積是cm3

          查看答案和解析>>

          同步練習(xí)冊(cè)答案