日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C的方程為,其離心率為,經(jīng)過橢圓焦點且垂直于長軸的弦長為3.

          (Ⅰ)求橢圓C的方程;

          (Ⅱ)設(shè)直線l:與橢圓C交于A、B兩點,P為橢圓上的點,O為坐標(biāo)原點,且滿足,求的取值范圍.

           

          【答案】

          (Ⅰ). (Ⅱ)

          【解析】

          試題分析:(Ⅰ)由已知可得

          所以

          解之得

          故橢圓的方程為.        5分

          (Ⅱ) 由消y化簡整理得:,

           ①  

          設(shè)點的坐標(biāo)分別為,

                   8分

          由于點在橢圓上,所以

          從而,化簡得,經(jīng)檢驗滿足①式.

           

          因為,得3≤4k2+3≤4,

          ≤1,故         12分

          考點:橢圓的標(biāo)準(zhǔn)方程,平面向量的線性運算,直線與橢圓的位置關(guān)系。

          點評:中檔題,確定圓錐曲線的標(biāo)準(zhǔn)方程,往往利用幾何特征,確定a,b,c,e得到關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題利用韋達定理,簡化了計算過程。

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的方程為
          x2
          a2
          +
          y2
          b2
          =1(a≥2b>0)

          (1)求橢圓C的離心率的取值范圍;
          (2)若橢圓C與橢圓2x2+5y2=50有相同的焦點,且過點M(4,1),求橢圓C的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的方程為
          x2
          a2
          y2
          b2
          =1
          (a>b>0),稱圓心在坐標(biāo)原點O,半徑為
          a2+b2
          的圓為橢圓C的“伴隨圓”,橢圓C的短軸長為2,離心率為
          6
          3

          (Ⅰ)求橢圓C及其“伴隨圓”的方程;
          (Ⅱ)若直線l與橢圓C交于A,B兩點,與其“伴隨圓”交于C,D兩點,當(dāng)|CD|=
          13
           時,求△AOB面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•泉州模擬)已知橢圓C的方程為:
          x2
          a2
          +
          y2
          2
          =1 (a>0)
          ,其焦點在x軸上,離心率e=
          2
          2

          (1)求該橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)動點P(x0,y0)滿足
          OP
          =
          OM
          +2
          ON
          ,其中M,N是橢圓C上的點,直線OM與ON的斜率之積為-
          1
          2
          ,求證:x02+2
          y
          2
          0
          為定值.
          (3)在(2)的條件下,問:是否存在兩個定點A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•衡陽模擬)已知橢圓C的方程為
          y2
          a2
          +
          x2
          b2
          =1(a>b>0),離心率e=
          2
          2
          ,上焦點到直線y=
          a2
          c
          的距離為
          2
          2
          ,直線l與y軸交于一點P(0,m),與橢圓C交于相異兩點A,B且
          AP
          =t
          PB

          (1)求橢圓C的方程;
          (2)若
          OA
          +t
          OB
          =4
          OP
          ,求m的取值范圍•

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的方程為
          x 2
          4
          +
          y2
          3
          =1,過C的右焦點F的直線與C相交于A、B兩點,向量
          m
          =(-1,-4),若向量
          OA
          -
          OB
          m
          -
          OF
          共線,則直線AB的方程是( 。

          查看答案和解析>>

          同步練習(xí)冊答案