日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2011•鹽城二模)在平面直角坐標(biāo)系xOy中,橢圓x2+
          y2
          4
          =1在第一象限的部分為曲線C,曲線C在其上動點P(x0,y0)處的切線l與x軸和y軸的交點分別為A、B,且向量
          OM
          =
          OA
          +
          OB

          (1)求切線l的方程(用x0表示);
          (2)求動點M的軌跡方程.
          分析:(1)求導(dǎo)函數(shù),可得切線斜率,從而可得切線l的方程;
          (2)確定A,B的坐標(biāo),可得向量坐標(biāo),在利用消參法,即可得到動點M的軌跡方程.
          解答:解:(1)因為y=2
          1-x2
          ,所以y′═-
          2x
          1-x2
          ,(3分)
          故切線l的方程為y-2
          1-x02
          =-
          2x0
          1-x02
          (x-x0),即y=-
          2x0
          1-x02
          x+
          2
          1-x02
          .(5分)
          (2)設(shè)A(x1,0)、B(0,y2),M(x,y)是軌跡上任一點,
          在y=-
          2x0
          1-x02
          x+
          2
          1-x02
          中,令y=0,得x1=
          1
          x0

          令x=0,得y2=
          2
          1-x02
          ,則由
          OM
          =
          OA
          +
          OB
          ,得
          x=
          1
          x0
          y=
          2
          1-x02
          (8分)
          消去x0,得動點M的軌跡方程為
          1
          x2
          +
          4
          y2
          =1(x>1).(10分)
          點評:本題考查導(dǎo)數(shù)知識的運用,考查向量知識,考查學(xué)生分析解決問題的能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•鹽城二模)選修4-4:坐標(biāo)系與參數(shù)方程
          若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2cos(θ+
          π3
          ),它們相交于A、B兩點,求線段AB的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•鹽城二模)已知a,b,c是非零實數(shù),則“a,b,c成等比數(shù)列”是“b=
          ac
          ”的
          必要不充分
          必要不充分
          條件(從“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中選擇一個填空).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•鹽城二模)在△ABC中,角A、B、C的所對邊的長分別為a、b、c,且a=
          5
          ,b=3,sinC=2sinA.
          (Ⅰ)求c的值;
          (Ⅱ)求 sin(2A-
          π
          3
          )
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•鹽城二模)已知f(x)=cosx,g(x)=sinx,記Sn=2
          2n
          k=1
          f(
          (k-1)π
          2n
          )
          -
          1
          2n
          2n
          k=1
          g(
          (k-n-1)π
          2n
          )
          ,Tm=S1+S2+…+Sm,若Tm<11,則m的最大值為
          5
          5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•鹽城二模)在如圖所示的多面體中,已知正三棱柱ABC-A1B1C1的所有棱長均為2,四邊形ABCD是菱形.
          (Ⅰ)求證:平面ADC1⊥平面BCC1B1;
          (Ⅱ)求該多面體的體積.

          查看答案和解析>>

          同步練習(xí)冊答案