日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四棱錐P-ABCD中,四邊形ABCD是正方形,PD⊥平面ABCDPD=AB=2, E,F,G分別是PC,PD,BC的中點.

          (1)求三棱錐E-CGF的體積;
          (2)求證:平面PAB//平面EFG

          (1)(2)對于面面平行的證明,一般要根據(jù)判定定理來得到,先證明EG//平面PAB.來說民結(jié)論。

          解析試題分析:(1)解:∵PD⊥平面ABCD,
          PDBC.
          又∵ABCD為正方形,
          CDBC,
          BC⊥平面PCDGC⊥平面CEF.
          VE-CGF= VG-CEF=×SCEF×GC=×(×1×1)×1=.      3分

          (2)證明:E,F分別是線段PC,PD的中點,
          EF//CD.
          ABCD為正方形,AB//CD
          EF//AB.
          EF平面PAB,
          EF//平面PAB
          E,G分別是線段PC,BC的中點,
          EG//PB.
          EG平面PAB,
          EG//平面PAB
          EFEG=E,
          ∴平面PAB//平面EFG.                            6分
          (3)Q為線段PB中點時,PC⊥平面ADQ
          PB中點Q,連接DE,EQ,AQ,
          EQ//BC//AD,
          ADEQ為平面四邊形,
          PD⊥平面ABCD,得ADPD,
          ADCD,PDCD=D,
          AD⊥平面PDC,∴ADPC,
          又三角形PDC為等腰直角三角形,E為斜邊中點,
          DEPC.
          ADDE=D,
          PC⊥平面ADQ.                       10分
          考點:線面平行,體積
          點評:主要是考查了幾何體的體積的計算,以及線面平行的判定定理的運用,屬于中檔題。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐P-ABCD中,底面ABCD是正方形,底面,且PA=AB.

          (1)求證:BD平面PAC;
          (2)求異面直線BC與PD所成的角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖(1),在等腰梯形CDEF中,CB、DA是梯形的高,,現(xiàn)將梯形沿CB、DA折起,使EF//AB且,得一簡單組合體如圖(2)所示,已知分別為的中點.

          圖(1)                      圖(2)
          (Ⅰ)求證:平面
          (Ⅱ)求證:平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.

          (1)求證:GH∥平面CDE;
          (2)若,求四棱錐F-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, BD=,AB=2CD=8.

          (1)設(shè)M是PC上的一點,證明:平面MBD⊥平面PAD;
          (2)求四棱錐P-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖:四棱錐中,,,,

          (Ⅰ)證明: 平面
          (Ⅱ)在線段上是否存在一點,使直線與平面成角正弦值等于,若存在,指出點位置,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖, 三棱柱ABC—A1B1C1的側(cè)棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上動點, F是AB中點, AC =" 1," BC =" 2," AA1 =" 4."

          (1) 當(dāng)E是棱CC1中點時, 求證: CF∥平面AEB1;
          (2) 在棱CC1上是否存在點E, 使得二面角A—EB1—B
          的余弦值是, 若存在, 求CE的長, 若不存在,
          請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,是均以為斜邊的等腰直角三角形,,分別為,的中點,的中點,且平面.

          (1)證明:平面
          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,且AB=AD,BC=DC.

          (1)求證:平面EFGH;
          (2)求證:四邊形EFGH是矩形.

          查看答案和解析>>

          同步練習(xí)冊答案