已知函數(shù)的導(dǎo)函數(shù)是
,
在
處取得極值,且
.
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間
上的最大值為
,若對(duì)任意的
總有
成立,求
的取值范圍;
(Ⅲ)設(shè)是曲線
上的任意一點(diǎn).當(dāng)
時(shí),求直線OM斜率的最小值,據(jù)此判斷
與
的大小關(guān)系,并說明理由.
(Ⅰ)的極大值為
,極小值為
;(Ⅱ)
的取值范圍是:
;(Ⅲ)直線OM斜率的最小值為4;
,證明詳見解析.
【解析】
試題分析:(Ⅰ)由已知,首先利用求出
,再由
得
,從而得
,其導(dǎo)函數(shù)
,利用求函數(shù)極值的一般方法及一般步驟列表即可求得函數(shù)
的極大值和極小值;(Ⅱ)在(Ⅰ)的基礎(chǔ)上,分
,
兩種情形討論.①當(dāng)
時(shí),由(I)知
在
上遞增,所以
的最大值
,問題轉(zhuǎn)化為
;②當(dāng)
時(shí),
的最大值
,由
對(duì)任意的
恒成立,等價(jià)于
,進(jìn)而可求得
的取值范圍;(Ⅲ)由已知易得直線
斜率
,由于
,易得直線
斜率的最小值為4.當(dāng)
時(shí),有
,故
,可以構(gòu)造函數(shù)
,利用導(dǎo)數(shù)證明
在
恒成立,從而證得
.
試題解析:(I)依題意,,解得
,
1分
由已知可設(shè),因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040904055217353214/SYS201404090407438610425926_DA.files/image009.png">,所以
,則
,導(dǎo)函數(shù)
.
3分
列表:
|
|
1 |
(1,3) |
3 |
(3,+∞) |
|
+ |
0 |
- |
0 |
+ |
|
遞增 |
極大值4 |
遞減 |
極小值0 |
遞增 |
由上表可知在
處取得極大值為
,
在
處取得極小值為
.
5分
(Ⅱ)①當(dāng)時(shí),由(I)知
在
上遞增,所以
的最大值
, 6分
由對(duì)任意的
恒成立,得
,則
,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040904055217353214/SYS201404090407438610425926_DA.files/image039.png">,所以
,則
,因此
的取值范圍是
.
8分
②當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040904055217353214/SYS201404090407438610425926_DA.files/image044.png">,所以
的最大值
,由
對(duì)任意的
恒成立,得
,
∴
,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040904055217353214/SYS201404090407438610425926_DA.files/image014.png">,所以
,因此
的取值范圍是
.
綜上①②可知,的取值范圍是
.
10分
(Ⅲ)當(dāng)時(shí),直線
斜率
,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040904055217353214/SYS201404090407438610425926_DA.files/image025.png">,所以
,則
,即直線
斜率的最小值為4.
11分
首先,由,得
.
其次,當(dāng)時(shí),有
,所以
,
12分
證明如下:記,則
,所以
在
遞增,又
,則
在
恒成立,即
,所以
.
14分.
考點(diǎn):1.利用導(dǎo)數(shù)求函數(shù)的極值、最值;2.恒成立問題參數(shù)取值范圍問題;3.利用導(dǎo)數(shù)證明不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆江蘇省高三年級(jí)第一次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)的導(dǎo)函數(shù)
是二次函數(shù),當(dāng)
時(shí),
有極值,且極大值為2,
.
(1)求函數(shù)的解析式;
(2)有兩個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù),若存在實(shí)數(shù)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省漳州市高考模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)的導(dǎo)函數(shù)是
,
在
處取得極值,且
,
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間
上的最大值為
,若對(duì)任意的
總有
成立,求
的取值范圍;
(Ⅲ)設(shè)是曲線
上的任意一點(diǎn).當(dāng)
時(shí),求直線OM斜率的最
小值,據(jù)此判斷與
的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省高三第一次模擬考試數(shù)學(xué)理卷 題型:填空題
已知函數(shù)的導(dǎo)函數(shù)是
,設(shè)
是方程
的兩根.若
,
,則|
|的取值范圍為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三第一次月考理科數(shù)學(xué)卷 題型:填空題
已知函數(shù)的導(dǎo)函數(shù)是
,
. 設(shè)
是方程
的兩根,則|
|的取值范圍為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com