日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,M、N分別為AB、BC的中點(diǎn).
          (1)當(dāng)點(diǎn)P在DD1上運(yùn)動(dòng)時(shí),是否都有MN∥平面A1C1P?證明你的結(jié)論;
          (2)當(dāng)點(diǎn)P在何位置時(shí),二面角P-MN-B1 為直二面角;
          (3)按圖中示例,在給出的方格紙中,用事先再畫(huà)出此正方體的4個(gè)形狀不同的表面展開(kāi)圖,且每個(gè)展開(kāi)提均滿(mǎn)足條件“有四個(gè)正方形連成一個(gè)長(zhǎng)方形”.(如果多畫(huà),則按前4個(gè)記分)
          分析:(1)當(dāng)點(diǎn)P在DD1上移動(dòng)時(shí),都有MN∥平面A1C1P.由線(xiàn)面平行的判定定理證明即可
          (2)設(shè)DP=t,以DA為x軸,以DC為y軸,以DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能夠推導(dǎo)出當(dāng)DP=
          3
          8
          時(shí),二面角P-MN-B1 為直二面角.
          (3)由正方體12種展開(kāi)圖,選其中“1-4-1”的情況即可.
          解答:解:(1)當(dāng)點(diǎn)P在DD1上移動(dòng)時(shí),都有MN∥平面A1C1P   …(1分)
          證明如下:
          在正方體ABCD-A1B1C1D1中,AA1=CC1,AA1∥CC1
          ∴四邊形AA1C1C是平行四邊形,
          ∴AC∥A1C1
          由(1)知MN∥AC,
          ∴MN∥A1C1
          又∵M(jìn)N?面A1C1P,A1C1?平面A1C1P,
          ∴MN∥平面A1C1P,…(4分)
          (2)設(shè)DP=t,以DA為x軸,以DC為y軸,以DD1為z軸,建立空間直角坐標(biāo)系,
          則M(1,
          1
          2
          ,0),N(
          1
          2
          ,1,0),B1(1,1,1),P(0,0,t),
          MN
          =(-
          1
          2
          ,
          1
          2
          ,0),
          MB1
          =(0,
          1
          2
          ,1),
          MP
          =(-1,-
          1
          2
          ,t),
          設(shè)平面MNB1的法向量為
          m
          =(x,y,z),則
          MN
          m
          =0
          MB1
          m
          =0,
          1
          2
          x+z=0
          -
          1
          2
          x+
          1
          2
          y=0
          ,解得
          m
          =(2,2,-1).
          設(shè)平面MNP的法向量為
          n
          =(x1,y1,z1)
          ,則
          MN
          n
          =0
          ,
          MP
          n
          =0

          -
          1
          2
          x1+
          1
          2
          y1=0
          -x1-
          1
          2
          y1+tz1=0
          ,解得
          n
          =(1,1,
          3
          2
          t
          ),
          ∵二面角P-MN-B1 為直二面角,
          m
          n
          =2+2-
          3
          2
          t
          =0,解得t=
          3
          8

          故當(dāng)DP=
          3
          8
          時(shí),二面角P-MN-B1 為直二面角.…(9分)
          (3)符合條件的表面展開(kāi)圖還有5個(gè),如圖,正確畫(huà)出一個(gè)得(1分)…(13分)
          點(diǎn)評(píng):本小題主要考查直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面的位置關(guān)系等基礎(chǔ)知識(shí),考查空間想象能力,推理論證能力,解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          兩個(gè)相同的正四棱錐組成如圖所示的幾何體,可放入棱長(zhǎng)為1的正方體內(nèi),使正四棱錐的底面ABCD與正方體的某一個(gè)平面平行,且各頂點(diǎn)均在正方體的面上,則這樣的幾何體體積的可能值有
           
          個(gè).
          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          兩相同的正四棱錐組成如圖所示的幾何體,可放棱長(zhǎng)為1的正方體內(nèi),使正四棱錐的底面ABCD與正方體的某一個(gè)平面平行,且各頂點(diǎn)均在正方體的面上,則這樣的幾何體體積的可能值有(  )

           

          A.1個(gè)                   B.2個(gè)                   C.3個(gè)                   D.無(wú)窮多個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          兩相同的正四棱錐組成如圖1所示的幾何體,可放棱長(zhǎng)為1的正方體內(nèi),使正四棱錐的底面ABCD與正方體的某一個(gè)平面平行,且各頂點(diǎn)均在正方體的面上,則這樣的幾何體體積的可能值有

          (A)1個(gè)     (B)2個(gè)       (C)3個(gè)    。―)無(wú)窮多個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011年四川省高二第二階段考試?yán)砜茢?shù)學(xué) 題型:選擇題

          如圖2,兩相同的正四棱錐組成如圖所示的幾何體,可放棱長(zhǎng)為1的正方體內(nèi),使正四棱錐的底面ABCD與正方體的某一個(gè)平面平行,且各頂點(diǎn)均在正方體的面上,則這樣的幾何體體積的可能值有(    )

          A.1個(gè)         B.2個(gè)         C. 3個(gè)        D.無(wú)窮多個(gè)

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年度新課標(biāo)高三上學(xué)期數(shù)學(xué)單元測(cè)試8-理科-立體幾何初步、空間向量與立體幾何 題型:填空題

           兩個(gè)相同的正四棱錐組成如圖所示的幾何體,可放入棱長(zhǎng)為

              1的正方體內(nèi),使正四棱錐的底面ABCD與正方體的某一個(gè)

          平面平行,且各頂點(diǎn)均在正方體的面上,則這樣的

          幾何體體積的可能值有               個(gè).

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案