日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)g(x)=a﹣x2 ≤x≤e,e為自然對數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對稱的點,則實數(shù)a的取值范圍是

          【答案】[1,e2﹣2]
          【解析】解:由已知,得到方程a﹣x2=﹣2lnx﹣a=2lnx﹣x2在[ ,e]上有解. 設(shè)f(x)=2lnx﹣x2 , 求導(dǎo)得:f′(x)= ﹣2x=
          ≤x≤e,∴f′(x)=0在x=1有唯一的極值點,
          ∵f( )=﹣2﹣ ,f(e)=2﹣e2 , f(x)極大值=f(1)=﹣1,且知f(e)<f( ),
          故方程﹣a=2lnx﹣x2在[ ,e]上有解等價于2﹣e2≤﹣a≤﹣1.
          從而a的取值范圍為[1,e2﹣2].
          所以答案是:[1,e2﹣2]
          【考點精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性對題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】持續(xù)性的霧霾天氣嚴(yán)重威脅著人們的身體健康,汽車排放的尾氣是造成霧霾天氣的重要因素之一.為了貫徹落實國務(wù)院關(guān)于培育戰(zhàn)略性新興產(chǎn)業(yè)和加強節(jié)能減排工作的部署和要求,中央財政安排專項資金支持開展私人購買新能源汽車補貼試點.2017年國家又出臺了調(diào)整新能源汽車推廣應(yīng)用財政補貼的新政策,其中新能源乘用車推廣應(yīng)用補貼標(biāo)準(zhǔn)如表: 某課題組從汽車市場上隨機選取了20輛純電動乘用車,根據(jù)其續(xù)駛里程R(單詞充電后能行駛的最大里程,R∈[100,300])進(jìn)行如下分組:第1組[100,150),第2組[150,200),第3組[200,250),第4組[250,300],制成如圖所示的頻率分布直方圖.已知第1組與第3組的頻率之比為1:4,第2組的頻數(shù)為7.

          純電動續(xù)駛里程R(公里)

          100≤R<150

          150≤R<250

          R>250

          補貼標(biāo)準(zhǔn)(萬元/輛)

          2

          3.6

          44


          (1)請根據(jù)頻率分布直方圖統(tǒng)計這20輛純電動乘用車的平均續(xù)駛里程;
          (2)若以頻率作為概率,設(shè)ξ為購買一輛純電動乘用車獲得的補貼,求ξ的分布列和數(shù)學(xué)期望E(ξ).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】F是拋物線C:y2=4x的焦點,過F作兩條斜率都存在且互相垂直的直線l1 , l2 , l1交拋物線C于點A,B,l2交拋物線C于點G,H,則 的最小值是(
          A.8
          B.8
          C.16
          D.16

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點,AC⊥BC,且AC=BC.
          (Ⅰ)求證:AM⊥平面EBC;
          (Ⅱ)求二面角A﹣EB﹣C的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將函數(shù)y=2sin(2x+ )的圖象向右平移 個單位,所得圖象對應(yīng)的函數(shù)(
          A.在區(qū)間[ ]上單調(diào)遞增
          B.在區(qū)間[ , ]上單調(diào)遞減
          C.在區(qū)間[﹣ ]上單調(diào)遞增
          D.在區(qū)間[﹣ , ]上單調(diào)遞減

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= x2 , g(x)=alnx.
          (1)若曲線y=f(x)﹣g(x)在x=1處的切線的方程為6x﹣2y﹣5=0,求實數(shù)a的值;
          (2)設(shè)h(x)=f(x)+g(x),若對任意兩個不等的正數(shù)x1 , x2 , 都有 >2恒成立,求實數(shù)a的取值范圍;
          (3)若在[1,e]上存在一點x0 , 使得f′(x0)+ <g(x0)﹣g′(x0)成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點P(﹣1, )是橢圓E: =1(a>b>0)上一點,F(xiàn)1 , F2分別是橢圓E的左、右焦點,O是坐標(biāo)原點,PF1⊥x軸.
          (1)求橢圓E的方程;
          (2)設(shè)A,B是橢圓E上兩個動點,滿足: (0<λ<4,且λ≠2),求直線AB的斜率.
          (3)在(2)的條件下,當(dāng)△PAB面積取得最大值時,求λ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在研究函數(shù) f ( x )= 的性質(zhì)時,某同學(xué)受兩點間距離公式啟發(fā),將f(x)變形為f(x)= ,并給出關(guān)于函數(shù)f(x)以下五個描述:
          ①函數(shù) f(x)的圖象是中心對稱圖形;
          ②函數(shù) f(x)的圖象是軸對稱圖形;
          ③函數(shù) f(x)在[0,6]上是增函數(shù);
          ④函數(shù) f(x)沒有最大值也沒有最小值;
          ⑤無論m為何實數(shù),關(guān)于x的方程 f(x)﹣m=0都有實數(shù)根.
          其中描述正確的是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) f ( x )=sin(2x+ )+cos(2x+ )+2sin x cos x.
          (Ⅰ)求函數(shù) f ( x) 圖象的對稱軸方程;
          (Ⅱ)將函數(shù) y=f ( x) 的圖象向右平移 個單位,再將所得圖象上各點的橫坐標(biāo)伸長為原來的 4 倍,縱坐標(biāo)不變,得到函數(shù) y=g ( x) 的圖象,求 y=g ( x) 在[ ,2π]上的值域.

          查看答案和解析>>

          同步練習(xí)冊答案