日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如果對(duì)一切實(shí)數(shù)x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立,則實(shí)數(shù)a的取值范圍是(
          A.(﹣∞, ]
          B.[3,+∞)
          C.[﹣2 ,2 ]
          D.[﹣3,3]

          【答案】D
          【解析】解:實(shí)數(shù)x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立 + ≥asinx+1﹣sin2x恒成立, 令f(y)= +
          則asinx+1﹣sin2x≤f(y)min ,
          當(dāng)y>0時(shí),f(y)= + ≥2 =3(當(dāng)且僅當(dāng)y=6時(shí)取“=”),f(y)min=3;
          當(dāng)y<0時(shí),f(y)= + ≤﹣2 =﹣3(當(dāng)且僅當(dāng)y=﹣6時(shí)取“=”),f(y)max=﹣3,f(y)min不存在;
          綜上所述,f(y)min=3.
          所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.
          ①若sinx>0,a≤sinx+ 恒成立,令sinx=t,則0<t≤1,再令g(t)=t+ (0<t≤1),則a≤g(t)min
          由于g′(t)=1﹣ <0,
          所以,g(t)=t+ 在區(qū)間(0,1]上單調(diào)遞減,
          因此,g(t)min=g(1)=3,
          所以a≤3;
          ②若sinx<0,則a≥sinx+ 恒成立,同理可得a≥﹣3;
          ③若sinx=0,0≤2恒成立,故a∈R;
          綜合①②③,﹣3≤a≤3.
          故選:D.
          將不等式 ﹣cos2x≥asinx﹣ 恒成立轉(zhuǎn)化為 + ≥asinx+1﹣sin2x恒成立,構(gòu)造函數(shù)f(y)= + ,利用基本不等式可求得f(y)min=3,于是問題轉(zhuǎn)化為asinx﹣sin2x≤2恒成立.通過對(duì)inx>0、sinx<0、sinx=0三類討論,
          可求得對(duì)應(yīng)情況下的實(shí)數(shù)a的取值范圍,最后取其交集即可得到答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,C,F(xiàn)為⊙O上的點(diǎn),CA是∠BAF的角平分線,過點(diǎn)C作CD⊥AF交AF的延長線于D點(diǎn),CM⊥AB,垂足為點(diǎn)M.
          (1)求證:DC是⊙O的切線;
          (2)求證:AMMB=DFDA.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,給出下列命題: ①若α⊥β,m∥α,則m⊥β;
          ②若m⊥α,n⊥β,且m⊥n,則α⊥β;
          ③若m⊥β,m∥α,則α⊥β;
          ④若m∥α,n∥β,且m∥n,則α∥β.
          其中正確命題的序號(hào)是(
          A.①④
          B.②③
          C.②④
          D.①③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在多面體ABCDM中,△BCD是等邊三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.
          (Ⅰ)求證:CD⊥AM;
          (Ⅱ)若AM=BC=2,求直線AM與平面BDM所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)(其中為常數(shù)).

          (1)判斷函數(shù)的奇偶性;

          (2)若不等式時(shí)有解,求實(shí)數(shù)的取值范圍;

          (3)設(shè),是否存在正數(shù),使得對(duì)于區(qū)間上的任意三個(gè)實(shí)數(shù),,都存在以,為邊長的三角形?若存在,試求出這樣的的取值范圍;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函f(x)=lnx﹣ax2+(2﹣a)x. ①討論f(x)的單調(diào)性;
          ②設(shè)a>0,證明:當(dāng)0<x< 時(shí),
          ③函數(shù)y=f(x)的圖象與x軸相交于A、B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0 , 證明f′(x0)<0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將函數(shù) 圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的 ,縱坐標(biāo)不變,再向右平移 個(gè)單位長度,得到函數(shù)y=g(x)的圖象,則下列說法正確的是(
          A.函數(shù)g(x)的一條對(duì)稱軸是
          B.函數(shù)g(x)的一個(gè)對(duì)稱中心是
          C.函數(shù)g(x)的一條對(duì)稱軸是
          D.函數(shù)g(x)的一個(gè)對(duì)稱中心是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在某單位的職工食堂中,食堂每天以3元/個(gè)的價(jià)格從面包店購進(jìn)面包,然后以5元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以1元/個(gè)的價(jià)格賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了90個(gè)面包,以x(單位:個(gè),60≤x≤110)表示面包的需求量,T(單位:元)表示利潤.
          (Ⅰ)求T關(guān)于x的函數(shù)解析式;
          (Ⅱ)根據(jù)直方圖估計(jì)利潤T不少于100元的概率;
          (Ⅲ)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量x∈[60,70),則取x=65,且x=65的概率等于需求量落入[60,70)的頻率),求T的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知四面體ABCD的頂點(diǎn)都在同一個(gè)球的球面上,BC= ,BD=4,且滿足BC⊥BD,AC⊥BC,AD⊥BD.若該三棱錐的體積為 ,則該球的球面面積為

          查看答案和解析>>

          同步練習(xí)冊(cè)答案