日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2+
          a
          x
          (x≠0,a∈R)

          (1)判斷函數(shù)f(x)的奇偶性;
          (2)求函數(shù)y=(
          2
          3
          )x2+
          2
          x
          ,x∈[2,+∞)的值域.
          分析:(1)當a=0時,f(x)=x2為偶函數(shù);當a≠0時,根據(jù)f(-x)≠±f(x),可得結(jié)論.
          (2)當x≥2時根據(jù)導數(shù)的符號可得g(x)=x2+
          2
          x
          在區(qū)間[2,+∞)是增函數(shù),t=g(x)≥5.再根據(jù) y=(
          2
          3
          )t,t∈[5,+∞)
          是減函數(shù),求得函數(shù)y的值域.
          解答:解:(1)當a=0時,顯然f(x)=x2為偶函數(shù);
          當a≠0時,由于f(-x)≠±f(x),故f(x)既不是奇函數(shù)也不是偶函數(shù).
          (2)∵當x≥2時,令函數(shù)g(x)=x2+
          2
          x
          ,則g′(x)=2x-
          2
          x2
          =
          2(x3-1)
          x2
          ≥0
          ,
          所以g(x)在區(qū)間[2,+∞)是增函數(shù),且其最小值是g(2)=5.
          令t=g(x),則t≥5,且y=(
          2
          3
          )
          t

          再根據(jù) y=(
          2
          3
          )t,t∈[5,+∞)
          是減函數(shù),∴y≤(
          2
          3
          )5=
          32
          243
          ,再根據(jù)y>0,
          可得所求的函數(shù)值域是(0,
          32
          243
          ]
          點評:本題主要考查函數(shù)的奇偶性的判斷,利用導數(shù)研究函數(shù)的單調(diào)性,根據(jù)函數(shù)的單調(diào)性求函數(shù)的值域.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
          (1)求m的值,并確定f(x)的解析式;
          (2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學 來源:浙江省東陽中學高三10月階段性考試數(shù)學理科試題 題型:022

          已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

          查看答案和解析>>

          科目:高中數(shù)學 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學 來源:2009-2010學年河南省許昌市長葛三高高三第七次考試數(shù)學試卷(理科)(解析版) 題型:選擇題

          已知函數(shù)f(x)、g(x),下列說法正確的是( )
          A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
          B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
          C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
          D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

          查看答案和解析>>

          同步練習冊答案