日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直角坐標(biāo)平面內(nèi)y軸右側(cè)的一動(dòng)點(diǎn)P到點(diǎn)的距離比它到y(tǒng)軸的距離大

             (I)求動(dòng)點(diǎn)P的軌跡C的方程;

             (II)設(shè)Q為曲線C上的一個(gè)動(dòng)點(diǎn),點(diǎn)B,C在y軸上,若△QBC為圓的外切三角形,求△QBC面積的最小值。

           

          【答案】

          解:(Ⅰ) (Ⅱ)面積的最小值為

          【解析】本試題主要是考查了拋物線的方程的求解,以及直線與圓的位置關(guān)系,和三角形的面積公式的綜合運(yùn)用。

          (1)利用直接法表示出點(diǎn)所滿足的幾何關(guān)系,運(yùn)用代數(shù)的手段表示得到軌跡方程

          (2)根據(jù)已知條件得到由直線是圓的切線,可知,同理得到,然后借助于三角形的面積公式求解最值

          解:(Ⅰ)由題知點(diǎn)的距離與它到直線的距離相等,所以點(diǎn)的軌跡是拋物線,方程為;……4分

          (Ⅱ)設(shè),則

          由直線是圓的切線知

          同理,所以是方程的兩根

          ……8分

          由題知

          當(dāng)時(shí),取“

          面積的最小值為

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)選修4-2:矩陣與變換
          已知矩陣M=(
          2a
          2b
          )的兩^E值分別為λ1=-1和λ2=4.
          (I)求實(shí)數(shù)的值;
          (II )求直線x-2y-3=0在矩陣M所對(duì)應(yīng)的線性變換作用下的像的方程.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C的參數(shù)方程為
          x=sinα
          y=2cos2α-2
          ,
          (a為餓),曲線D的鍵標(biāo)方程為ρsin(θ-
          π
          4
          )=-
          3
          2
          2

          (I )將曲線C的參數(shù)方程化為普通方程;
          (II)判斷曲線c與曲線D的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.
          (3)選修4-5:不等式選講
          已知a,b為正實(shí)數(shù).
          (I)求證:
          a2
          b
          +
          b2
          a
          ≥a+b;
          (II)利用(I)的結(jié)論求函數(shù)y=
          (1-x)2
          x
          +
          x2
          1-x
          (0<x<1)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的極坐標(biāo)為(4
          2
          ,
          π
          4
          )
          ,曲線C的參數(shù)方程為
          x=1+
          2
          cosα
          y=
          2
          sinα
          (α為參數(shù)).求點(diǎn)M到曲線C上的點(diǎn)的距離的最小值
          5-
          2
          5-
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•大豐市一模)如圖所示,在直角坐標(biāo)平面內(nèi),反比例函數(shù)的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線,垂足為C,過(guò)點(diǎn)B作y軸垂線,垂足為D,連接AD、DC、CB.
          (1)若△ABD的面積為4,求點(diǎn)B的坐標(biāo);
          (2)求證:DC∥AB;
          (3)四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•懷化二模)在直角坐標(biāo)平面內(nèi),y軸右側(cè)的一動(dòng)點(diǎn)P到點(diǎn)(
          1
          2
          ,0)的距離比它到y(tǒng)軸的距離大
          1
          2

          (Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
          (Ⅱ)設(shè)Q為曲線C上的一個(gè)動(dòng)點(diǎn),點(diǎn)B,C在y軸上,若△QBC為圓(x-1)2+y2=1的外切三角形,求△QBC面積的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案