日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)若函數(shù)y=f(x)的定義域為[-2,2],求函數(shù)y=f(x+1)+f(x-1)的定義域.
          (2)求值:(lg2)2+
          43
          log1008+lg5•lg20+lg25
          分析:(1)要使函數(shù)有意義需要f(x+1)且f(x-1)都有意義,列出不等式組,求出定義域.
          (2)利用對數(shù)函數(shù)的換底公式將log1008換成以10為底的對數(shù)函數(shù),利用對數(shù)的運算法則化簡,求出值.
          解答:解:(1)∵y=f(x)的定義域為[-2,2],
          -2≤x+1≤2
          -2≤x-1≤2

          解得-1≤x≤1
          ∴函數(shù)的定義域為[-1,1];
          (2)(lg2)2+
          4
          3
          log1008+lg5•lg20+lg25

          =(lg2)2+
          4
          3
          lg8
          lg100
          +lg5•(lg2+lg10)+2lg
          10
          2

          =(lg2)2+2lg2+lg5•lg2+lg5+2-2lg2
          =(lg2)2+2lg2+lg
          10
          2
          •lg2+lg
          10
          2
          +2-2lg2

          =(lg2)2+2lg2+(1-lg2)•lg2+1-lg2+2-2lg2
          =3.
          點評:本題考查知f(x)的定義域為[c,d]求f(ax+b)的定義域只要解不等式c≤ax+b≤d即可
          考查對數(shù)函數(shù)的換底公式、對數(shù)函數(shù)的運算法則.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=lnx-2ax.
          (1)若函數(shù)y=f(x)的圖象在點(1,f(1))處的切線為直線l,且直線l與圓(x+1)2+y2=1相切,求a的值;
          (2)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)y=f(x)與g(x)=x2的圖象開口大小和方向都相同,且y=f(x)在x=m處取得最小值為-1.若函數(shù)y=f(x)在區(qū)間[-2,1]上的最大值為3,求m的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-16x+q+3.
          (1)若函數(shù)y=f(sinx)在區(qū)間(-∞,+∞)上存在零點,求實數(shù)q的取值范圍;
          (2)問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)y=f(x),滿足f(-2)=f(0)=0,且f(x)的最小值為-1.
          (1)若函數(shù)y=F(x),x∈R為奇函數(shù),當(dāng)x>0時,F(xiàn)(x)=f(x),求函數(shù)y=F(x),x∈R的解析式;
          (2)設(shè)g(x)=f(-x)-λf(x)+1,若g(x)在[-1,1]上是減函數(shù),求實數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•徐州三模)已知函數(shù)f(x)=lnx-ax2-x,a∈R.
          (1)若函數(shù)y=f(x)在其定義域內(nèi)是單調(diào)增函數(shù),求a的取值范圍;
          (2)設(shè)函數(shù)y=f(x)的圖象被點P(2,f(2))分成的兩部分為c1,c2(點P除外),該函數(shù)圖象在點P處的切線為l,且c1,c2分別完全位于直線l的兩側(cè),試求所有滿足條件的a的值.

          查看答案和解析>>

          同步練習(xí)冊答案