【題目】設(shè)關(guān)于x的方程x2﹣ax﹣1=0和x2﹣x﹣2a=0的實(shí)根分別為x1、x2和x3、x4 , 若x1<x3<x2<x4 , 則實(shí)數(shù)a的取值范圍為 .
【答案】
【解析】解:由x2﹣x﹣2a=0得2a=x2﹣x,
由x2﹣ax﹣1=0(x≠0)得ax=x2﹣1,則2a=2x﹣ ,
作出函數(shù)y=x2﹣x和y=2x﹣ 的函數(shù)圖象如下圖:
由x2﹣x=2x﹣ 得,x2﹣3x+
=0,則
=0,
∴ =0,
解得x=1或x=1 或x=
,
∵x1<x3<x2<x4 , 且當(dāng)x= 時(shí),可得a=
,
∴由圖可得,0<a< ,
所以答案是: .
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)的零點(diǎn),掌握函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓
的離心率為
,且過(guò)點(diǎn)
.
(1)求的方程;
(2)若動(dòng)點(diǎn)在直線(xiàn)
上,過(guò)
作直線(xiàn)交橢圓
于
兩點(diǎn),使得
,再過(guò)
作直線(xiàn)
,證明:直線(xiàn)
恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】.已知函數(shù).
(1)求過(guò)點(diǎn)的
圖象的切線(xiàn)方程;
(2)若函數(shù)存在兩個(gè)極值點(diǎn)
,
,求
的取值范圍;
(3)當(dāng)時(shí),均有
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,傾斜角為
的直線(xiàn)與橢圓相交于
兩點(diǎn),且線(xiàn)段
的中點(diǎn)為
.過(guò)橢圓
內(nèi)一點(diǎn)
的兩條直線(xiàn)分別與橢圓交于點(diǎn)
,且滿(mǎn)足
,其中
為實(shí)數(shù).當(dāng)直線(xiàn)
平行于
軸時(shí),對(duì)應(yīng)的
.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)變化時(shí),
是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(x2﹣a),a∈R.
(1)當(dāng)a=1時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(0,f(0))處的切線(xiàn)方程;
(2)若函數(shù)f(x)在(﹣3,0)上單調(diào)遞減,試求a的取值范圍;
(3)若函數(shù)f(x)的最小值為﹣2e,試求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三一班舉辦消防安全知識(shí)競(jìng)賽,分別選出3名男生和3名女生組成男隊(duì)和女隊(duì),每人一道必答題,答對(duì)則為本隊(duì)得10分,答錯(cuò)與不答都得0分,已知男隊(duì)每人答對(duì)的概率依次為 ,
,
,女隊(duì)每人答對(duì)的概率都是
,設(shè)每人回答正確與否相互之間沒(méi)有影響,用X表示男隊(duì)的總得分.
(I) 求X的分布列及其數(shù)學(xué)期望E(X);
(Ⅱ)求在男隊(duì)和女隊(duì)得分之和為50的條件下,男隊(duì)比女隊(duì)得分高的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)= (a>0,且a≠1)的值域?yàn)椋ī仭蓿?∞),則實(shí)數(shù)a的取值范圍是( )
A.(3,+∞)
B.(0, ]
C.(1,3)
D.[ ,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面積為5 ,b=5,求sinA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),
是橢圓
上的點(diǎn),設(shè)動(dòng)點(diǎn)
滿(mǎn)足
.
(1)求動(dòng)點(diǎn)的軌跡
的方程;
(2)若直線(xiàn)與曲線(xiàn)
相交于
,
兩個(gè)不同點(diǎn),求
面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com