日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F分別是線(xiàn)段BC、CD1的中點(diǎn).
          (1)求異面直線(xiàn)EF與AA1所成角的大小
          (2)求直線(xiàn)EF與平面AA1B1B所成角的大小.

          【答案】
          (1)解:建立如圖所示的坐標(biāo)系,設(shè)正方體的棱長(zhǎng)為2,則E(1,2,0),F(xiàn)(0,1,1),A(2,0,0),A1(2,0,2),

          =(﹣1,﹣1,1), =(0,0,2),

          ∴異面直線(xiàn)EF與AA1所成角的余弦值為| = ,

          ∴異面直線(xiàn)EF與AA1所成角的大小為arccos


          (2)解:平面AA1B1B的法向量為(1,0,0),

          ∴直線(xiàn)EF與平面AA1B1B所成角的正弦值為| |= ,

          ∴直線(xiàn)EF與平面AA1B1B所成角的大小為arcsin


          【解析】建立如圖所示的坐標(biāo)系,利用向量方法,即可求出所求角.
          【考點(diǎn)精析】關(guān)于本題考查的異面直線(xiàn)及其所成的角和空間角的異面直線(xiàn)所成的角,需要了解異面直線(xiàn)所成角的求法:1、平移法:在異面直線(xiàn)中的一條直線(xiàn)中選擇一特殊點(diǎn),作另一條的平行線(xiàn);2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線(xiàn)間的關(guān)系;已知為兩異面直線(xiàn),A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)=2lnx﹣ ﹣m,若關(guān)于x的方程f(f(x))=x恰有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是(
          A.(2ln3﹣4,+∞)
          B.(﹣∞,2ln3﹣4)
          C.(﹣4,+∞)
          D.(﹣∞,﹣4)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知美國(guó)蘋(píng)果公司生產(chǎn)某款iphone手機(jī)的年固定成本為40萬(wàn)美元,每生產(chǎn)1只還需另投入16美元.設(shè)蘋(píng)果公司一年內(nèi)共生產(chǎn)該款iphone手機(jī)x萬(wàn)只并全部銷(xiāo)售完,每萬(wàn)只的銷(xiāo)售收入為R(x)萬(wàn)美元,且R(x)=
          (1)寫(xiě)出年利潤(rùn)W(萬(wàn)元)關(guān)于年產(chǎn)量x(萬(wàn)只)的函數(shù)解析式;
          (2)當(dāng)年產(chǎn)量為多少萬(wàn)只時(shí),蘋(píng)果公司在該款手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是(  )

          A. 2017年第一季度總量和增速由高到低排位均居同一位的省只有1個(gè)

          B. 與去年同期相比,2017年第一季度五個(gè)省的總量均實(shí)現(xiàn)了增長(zhǎng)

          C. 去年同期河南省的總量不超過(guò)4000億元

          D. 2017年第一季度增速由高到低排位第5的是浙江省

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列四個(gè)命題中:①“等邊三角形的三個(gè)內(nèi)角均為60°”的逆命題;

          ②“若,則方程有實(shí)根”的逆否命題;

          ③“全等三角形的面積相等”的否命題;

          ④“若,則”的否命題.

          其中真命題的個(gè)數(shù)是( )

          A. 0 B. 1 C. 2 D. 3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)于定義域?yàn)镈的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,其中m<n,同時(shí)滿(mǎn)足:①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是[m,n]時(shí),f(x)的值域也是[m,n]. 則稱(chēng)函數(shù)f(x)是區(qū)間[m,n]上的“保值函數(shù)”,區(qū)間[m,n]稱(chēng)為“保值區(qū)間”.
          (1)求證:函數(shù)g(x)=x2﹣2x不是定義域[0,1]上的“保值函數(shù)”.
          (2)若函數(shù)f(x)=2+ (a∈R,a≠0)是區(qū)間[m,n]上的“保值函數(shù)”,求a的取值范圍.
          (3)對(duì)(2)中函數(shù)f(x),若不等式|a2f(x)|≤2x對(duì)x≥1恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿(mǎn)足 =
          (Ⅰ)求角A的大。
          (Ⅱ)若a=2 ,求△ABC面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓點(diǎn),直線(xiàn).

          (1)求與圓相切且與直線(xiàn)垂直的直線(xiàn)方程;

          (2)在直線(xiàn)為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿(mǎn)足:對(duì)于圓上任一點(diǎn)都有為一常數(shù),試求所有滿(mǎn)足條件的點(diǎn)的坐標(biāo).

          【答案】(1);(2)答案見(jiàn)解析.

          【解析】試題分析:

          (1)設(shè)所求直線(xiàn)方程為,利用圓心到直線(xiàn)的距離等于半徑可得關(guān)于b的方程,解方程可得,則所求直線(xiàn)方程為

          (2)方法1:假設(shè)存在這樣的點(diǎn),由題意可得,然后證明為常數(shù)為即可.

          方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則,據(jù)此得到關(guān)于的方程組,求解方程組可得存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù).

          試題解析:

          (1)設(shè)所求直線(xiàn)方程為,即,

          ∵直線(xiàn)與圓相切,∴,得,

          ∴所求直線(xiàn)方程為

          (2)方法1:假設(shè)存在這樣的點(diǎn)

          當(dāng)為圓軸左交點(diǎn)時(shí),;

          當(dāng)為圓軸右交點(diǎn)時(shí),

          依題意,,解得,(舍去),或.

          下面證明點(diǎn)對(duì)于圓上任一點(diǎn),都有為一常數(shù).

          設(shè),則,

          ,

          從而為常數(shù).

          方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則,

          ,將代入得,

          ,即

          對(duì)恒成立,

          ,解得(舍去),

          所以存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù).

          點(diǎn)睛:求定值問(wèn)題常見(jiàn)的方法有兩種:

          (1)從特殊入手,求出定值,再證明這個(gè)值與變量無(wú)關(guān).

          (2)直接推理、計(jì)算,并在計(jì)算推理的過(guò)程中消去變量,從而得到定值.

          型】解答
          結(jié)束】
          22

          【題目】已知函數(shù)的導(dǎo)函數(shù)為,其中為常數(shù).

          (1)當(dāng)時(shí)的最大值,并推斷方程是否有實(shí)數(shù)解;

          (2)若在區(qū)間上的最大值為-3,的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓E: + =1(a>b>0)的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的3個(gè)頂點(diǎn),直線(xiàn)l:y=﹣x+3與橢圓E有且只有一個(gè)公共點(diǎn)T.
          (Ⅰ)求橢圓E的方程及點(diǎn)T的坐標(biāo);
          (Ⅱ)設(shè)O是坐標(biāo)原點(diǎn),直線(xiàn)l′平行于OT,與橢圓E交于不同的兩點(diǎn)A、B,且與直線(xiàn)l交于點(diǎn)P.證明:存在常數(shù)λ,使得|PT|2=λ|PA||PB|,并求λ的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案