日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知a,b,c分別是△ABC中角A,B,C的對邊,且csinB= bcosC.
          (1)求角C的大;
          (2)若c=3,sinA=2sinB,求△ABC的面積SABC

          【答案】
          (1)解:△ABC中,csinB= bcosC,

          ∴sinCsinB= sinBcosC,

          ∴tanC= ,

          又C∈(0,π),

          ∴C=


          (2)解:由sinA=2sinB及正弦定理得:

          a=2b①,

          由c=3,C= 及余弦定理得:

          a2+b2﹣2abcosC=a2+b2﹣ab=c2=9,

          即a2+b2﹣ab=9②,

          聯(lián)立①②,

          解得a=2 ,b= ,

          則△ABC的面積SABC= absinC= ×2 × sin =


          【解析】(1)根據(jù)正弦定理轉(zhuǎn)化csinB= bcosC,求出tanC的值即可得出C的值;(2)由正弦定理化簡sinA=2sinB,再由c和cosC利用余弦定理得到關(guān)于a、b方程組,求出a、b的值,即可求出△ABC的面積.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識,掌握正弦定理:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 =1(a>b>0)的一個(gè)頂點(diǎn)為A(0,1),離心率為 ,過點(diǎn)B(0,﹣2)及左焦點(diǎn)F1的直線交橢圓于C,D兩點(diǎn),右焦點(diǎn)設(shè)為F2
          (1)求橢圓的方程;
          (2)求△CDF2的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=
          (1)求f(x)+f(1﹣x)的值;
          (2)若數(shù)列{an}滿足an=f(0)+f( )+f( )+…+f( )+f(1)(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
          (3)若數(shù)列{bn}滿足bn=2nan , Sn是數(shù)列{bn}的前n項(xiàng)和,是否存在正實(shí)數(shù)k,使不等式knSn>3bn對于一切的n∈N*恒成立?若存在,請求出k的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】4月23人是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動,為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書謎”,低于60分鐘的學(xué)生稱為“非讀書謎”
          附:K2= n=a+b+c+d

          P(K2≥k0

          0.100

          0.050

          0.025

          0.010

          0.001

          k0

          2.706

          3.841

          5.024

          6.635

          10.828


          (1)求x的值并估計(jì)全校3000名學(xué)生中讀書謎大概有多少?(經(jīng)頻率視為頻率)
          (2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書謎”與性別有關(guān)?

          非讀書迷

          讀書迷

          合計(jì)

          15

          45

          合計(jì)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , 的中點(diǎn).

          1)求證:平面平面;

          2)若二面角的余弦值為,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是為參數(shù)).

          (1)求直線和曲線的普通方程;

          (2)設(shè)直線和曲線交于兩點(diǎn),求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}中各項(xiàng)都大于1,前n項(xiàng)和為Sn , 且滿足an2+3an=6Sn﹣2.
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)令bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn;
          (3)求使得Tn 對所有n∈N*都成立的最小正整數(shù)m.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-5:不等式選講

          已知函數(shù)

          (1)求不等式的解集;

          (2)證明對于任意的 ,都有成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在四棱錐中,四邊形為菱形, 為正三角形,且分別為的中點(diǎn), 平面, 平面

          1)求證: 平面;

          2)求與平面所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案