日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若△ABC的三內(nèi)角A、B、C對應邊a、b、c滿足2a=b+c,則角A的取值范圍為

          【答案】(0, ]
          【解析】解:∵2a=b+c,

          由正弦定理可得,2sinA=sinB+sinC,

          則2sinA=2sin cos ,

          ∴2sin cos =sin cos

          ∴2sin cos =cos cos ,

          ∴2sin =cos ,

          ∵﹣1≤cos ≤1且sin >0,

          從而可得,0<sin ,

          ∴0<

          ∴0<A≤

          故答案為:(0, ].

          由正弦定理進行邊角互化,得出2sinA=sinB+sinC,根據(jù)和差化積可得2sinA=2sincos,由二倍角公式可得2sinA=4sincos,化簡后可得2sin=cos,根據(jù)正余弦函數(shù)的最值不難分析出A的取值范圍.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且 ,AD=CD=1.

          (1)求證:BD⊥AA1
          (2)若E為棱BC的中點,求證:AE∥平面DCC1D1

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在三棱柱ABC﹣A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥平面ABC,且D,E分別是棱A1B1 , A1A1的中點,點F在棱AB上,且AF= AB.

          (1)求證:EF∥平面BDC1;
          (2)求三棱錐D﹣BEC1的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知拋物線y2=2px(p>0),過點C(﹣4,0)作拋物線的兩條切線CA,CB,A,B為切點,若直線AB經(jīng)過拋物線y2=2px的焦點,△CAB的面積為24,則以直線AB為準線的拋物線標準方程是( 。
          A.y2=4x
          B.y2=﹣4x
          C.y2=8x
          D.y2=﹣8x

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθ=a(a>0),Q為l上一點,以OQ為邊作等邊三角形OPQ,且O、P、Q三點按逆時針方向排列.
          (Ⅰ)當點Q在l上運動時,求點P運動軌跡的直角坐標方程;
          (Ⅱ)若曲線C:x2+y2=a2 , 經(jīng)過伸縮變換 得到曲線C′,試判斷點P的軌跡與曲線C′是否有交點,如果有,請求出交點的直角坐標,沒有則說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系xOy中,已知點P(1,﹣2),直線l: (m 為參數(shù)),以坐標原點為極點,以 x軸的正半軸為極軸建立極坐標系;曲線C的極坐標方程為ρsin2θ=3cosθ;直線l與曲線C的交點為A,B.
          (1)求直線l和曲線C的普通方程;
          (2)求 + 的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)
          (1)求f(x)在(1,0)處的切線方程;
          (2)求證: ;
          (3)若lng(x)≤ax2對任意x∈R恒成立,求實數(shù)a的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系xOy中,已知曲線 (α為參數(shù)),在以O為極點,x軸正半軸為極軸的極坐標系中,曲線 ,曲線C3:ρ=2sinθ.
          (1)求曲線C1與C2的交點M的直角坐標;
          (2)設點A,B分別為曲線C2 , C3上的動點,求|AB|的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在梯形ABCD中,AB∥CD, ,四邊形ACFE為矩形,且CF⊥平面ABCD,AD=CD=BC=CF=1.

          (1)求證:EF⊥平面BCF;
          (2)點M在線段EF(含端點)上運動,當點M在什么位置時,平面MAB與平面FCB所成銳二面角最大,并求此時二面角的余弦值.

          查看答案和解析>>

          同步練習冊答案