日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的兩個(gè)焦點(diǎn)為,,離心率.

          (1)求橢圓的方程;

          (2)設(shè)直線與橢圓交于,兩點(diǎn),線段的垂直平分線交軸于點(diǎn),當(dāng)變化時(shí),求面積的最大值.

          【答案】(1);(2)

          【解析】試題分析:(1)根據(jù)橢圓幾何條件得,再由離心率解得,即得,(2)由直線與橢圓有兩個(gè)交點(diǎn)得判別式大于零,解得m取值范圍,再根據(jù)點(diǎn)斜式寫(xiě)出線段的垂直平分線方程,解得點(diǎn)坐標(biāo),根據(jù)點(diǎn)到直線距離公式得高,根據(jù)弦長(zhǎng)公式得底邊邊長(zhǎng),根據(jù)三角形面積公式得面積函數(shù)關(guān)系式,最后根據(jù)二次函數(shù)性質(zhì)求最大值.

          試題解析:(1)由離心率,半焦距,解得.

          所以,所以橢圓的方程是.

          (2)解:設(shè),

          據(jù)

          ∵直線與橢圓有兩個(gè)不同的交點(diǎn),

          ,又,所以.

          由根與系數(shù)的關(guān)系得

          設(shè)線段中點(diǎn)為,點(diǎn)橫坐標(biāo),,∴

          ∴線段垂直平分線方程為,∴點(diǎn)坐標(biāo)為,

          點(diǎn)到直線的距離,

          ,

          所以

          ,所以當(dāng)時(shí),三角形面積最大,且.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,…8,其中為標(biāo)準(zhǔn),為標(biāo)準(zhǔn). 已知甲廠執(zhí)行標(biāo)準(zhǔn)生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為6元/件; 乙廠執(zhí)行標(biāo)準(zhǔn)生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為元/件,假定甲, 乙兩廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn).

          (Ⅰ)已知甲廠產(chǎn)品的等級(jí)系數(shù)的概率分布列如下所示:

          5

          6

          7

          8

          0.4

          b

          0.1

          的數(shù)學(xué)期望, 求a,b的值;

          (Ⅱ)為分析乙廠產(chǎn)品的等級(jí)系數(shù),從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級(jí)系數(shù)組成一個(gè)樣本,數(shù)據(jù)如下:

          用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,求等級(jí)系數(shù)的數(shù)學(xué)期望;

          (Ⅲ)在(Ⅰ),(Ⅱ)的條件下,若以“性價(jià)比”為判斷標(biāo)準(zhǔn),則哪個(gè)工廠的產(chǎn)品更具可購(gòu)買(mǎi)性?說(shuō)明理由.

          注: ①產(chǎn)品的“性價(jià)比”=;②“性價(jià)比”大的產(chǎn)品更具可購(gòu)買(mǎi)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)在點(diǎn)處的切線是.

          (1)求函數(shù)的極值;

          (2)當(dāng)恒成立時(shí),求實(shí)數(shù)的取值范圍(為自然對(duì)數(shù)的底數(shù)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).(為自然對(duì)數(shù)的底數(shù))

          (1)設(shè);

          ①若函數(shù)處的切線過(guò)點(diǎn),求的值;

          ②當(dāng)時(shí),若函數(shù)上沒(méi)有零點(diǎn),求的取值范圍.

          (2)設(shè)函數(shù),且,求證:當(dāng)時(shí),.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在如圖所示的幾何體中,平面平面,四邊形和四邊形都是正方形,且邊長(zhǎng)為的中點(diǎn).

          (1)求證:直線平面;

          (2)求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】平面直角坐標(biāo)系中,已知橢圓)的左焦點(diǎn)為,離心率為,過(guò)點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)設(shè)點(diǎn)分別是橢圓的左、右頂點(diǎn),若過(guò)點(diǎn)的直線與橢圓相交于不同兩點(diǎn)

          ①求證:;

          ②求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的右焦點(diǎn)為,原點(diǎn)為,橢圓的動(dòng)弦過(guò)焦點(diǎn)且不垂直于坐標(biāo)軸,弦的中點(diǎn)為,過(guò)且垂直于線段的直線交直線于點(diǎn)

          (1)證明:三點(diǎn)共線;

          (2)求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,平面平面,,,,,點(diǎn)在棱上,且.

          (Ⅰ)求證:

          (Ⅱ)是否存在實(shí)數(shù),使得二面角的余弦值為?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.

          (1)求曲線的普通方程和曲線的極坐標(biāo)方程;

          (2)若射線與曲線,分別交于兩點(diǎn),求.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案