日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          求函數(shù)的單調(diào)區(qū)間;

          時,若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍.

          【答案】(Ⅰ)見解析;(Ⅱ) .

          【解析】試題分析:(1)求導,對k分類討論,得到函數(shù)的單調(diào)區(qū)間;(2)函數(shù)在區(qū)間內(nèi)單調(diào)遞減,即不等式在上成立,利用二次函數(shù)的圖象與性質(zhì),易得的取值范圍.

          試題解析:

          函數(shù)的定義域為.

          ,

          (1)時,令,解得,此時函數(shù)為單調(diào)遞增函數(shù);

          ,解得,此時函數(shù)為單調(diào)遞減函數(shù).

          (2)當時,

          ,即 時,

          ,解得,此時函數(shù)為單調(diào)遞增函數(shù);

          ,解得,此時函數(shù)為單調(diào)遞減函數(shù).

          時, 恒成立,函數(shù)上為單調(diào)遞增函數(shù);

          ,即 時,

          ,解得,此時函數(shù)為單調(diào)遞增函數(shù);

          ,解得,此時函數(shù)為單調(diào)遞減函數(shù).

          綜上所述,

          時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

          ,函數(shù)的單調(diào)遞增區(qū)間為, ,單調(diào)遞減區(qū)間為;

          函數(shù)的單調(diào)遞增區(qū)間為;

          函數(shù)的單調(diào)遞增區(qū)間為, ,單調(diào)遞減區(qū)間為.

          ,

          因為函數(shù)內(nèi)單調(diào)遞減,所以不等式在上成立.

          設(shè),則解得.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)f(x)=﹣ x3+ x2﹣6x+5的單調(diào)增區(qū)間是(
          A.(﹣∞,2)和(3,+∞)
          B.(2,3)
          C.(﹣1,6)
          D.(﹣3,﹣2)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)對任意的a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,且當x>0時,f(x)>1
          (1)判斷并證明f(x)的單調(diào)性;
          (2)若f(4)=3,解不等式f(3m2﹣m﹣2)<2.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知直線l:kx﹣y+1+2k=0(k∈R) (Ⅰ)證明直線l經(jīng)過定點并求此點的坐標;
          (Ⅱ)若直線l不經(jīng)過第四象限,求k的取值范圍;
          (Ⅲ)若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設(shè)△AOB的面積為S,求S的最小值及此時直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):

          產(chǎn)量x(千件)

          2

          3

          5

          6

          成本y(萬元)

          7

          8

          9

          12

          (Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程 = x (其中 = , =
          (Ⅱ)預計產(chǎn)量為8千件時的成本.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】【選修4—4:坐標系與參數(shù)方程】

          將圓上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>2倍,得曲線C.

          Ⅰ)寫出C的參數(shù)方程;

          設(shè)直線C的交點為,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=
          (1)求函數(shù)f(x)的零點;
          (2)若實數(shù)t滿足f(log2t)+f(log2 )<2f(2),求f(t)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】甲、乙兩組各有三名同學,他們在一次測驗中的成績的莖葉圖如圖所示,如果分別從甲、乙兩組中各隨機挑選一名同學,則這兩名同學成績相同的概率是

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)△ABC的三內(nèi)角A、B、C的對邊分別是a、b、c,且b(sinB﹣sinC)+(c﹣a)(sinA+sinC)=0 (Ⅰ)求角A的大;
          (Ⅱ)若a= ,sinC= sinB,求△ABC的面積.

          查看答案和解析>>

          同步練習冊答案