【題目】已知直線l1:ax-by-1=0(a、b不同時(shí)為0),l2:(a+2)x+y+a=0.
(1)若b=0且l1⊥l2,求實(shí)數(shù)a的值;
(2)當(dāng)b=2,且l1∥l2時(shí),求直線l1與l2之間的距離.
【答案】(1) ;(2)
【解析】試題分析:(1)當(dāng)時(shí),根據(jù)
,列出方程,即可求解
的值;
(2)當(dāng)時(shí),根據(jù)
,求得
的值,得到直線方程,利用兩平行線之間的距離公式,即可求解兩平行線之前的距離.
試題解析:
(1)當(dāng)b=0時(shí),l1:ax+1=0,由l1⊥l2,知a-2=0,解得a=2.
(2)當(dāng)b=3時(shí),l1:ax+3y+1=0,
當(dāng)l1∥l2時(shí),有解得a=3,
此時(shí),l1的方程為3x+3y+1=0,
l2的方程為x+y+3=0,
即3x+3y+9=0,
則它們之間的距離為d==
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)
在
上是單調(diào)遞增函數(shù),則
的取值范圍是______.
【答案】
【解析】∵,
∴,
又函數(shù)在
單調(diào)遞增,
∴在
上恒成立,
即在
上恒成立。
又當(dāng)時(shí),
,
∴。
又,
∴。
故實(shí)數(shù)的取值范圍是
。
答案:
點(diǎn)睛:對(duì)于導(dǎo)函數(shù)和函數(shù)單調(diào)性的關(guān)系要分清以下結(jié)論:
(1)當(dāng)時(shí),若
,則
在區(qū)間D上單調(diào)遞增(減);
(2)若函數(shù)在區(qū)間D上單調(diào)遞增(減),則
在區(qū)間D上恒成立。即解題時(shí)可將函數(shù)單調(diào)性的問題轉(zhuǎn)化為
的問題,但此時(shí)不要忘記等號(hào)。
【題型】填空題
【結(jié)束】
19
【題目】某珠寶店丟了一件珍貴珠寶,以下四人中只有一人說真話,只有一人偷了珠寶.甲:我沒有偷;乙:丙是小偷;丙:丁是小偷;丁:我沒有偷.根據(jù)以上條件,可以判斷偷珠寶的人是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>
的奇函數(shù),當(dāng)
.
(Ⅰ)求出函數(shù)在
上的解析式;
(Ⅱ)在答題卷上畫出函數(shù)的圖象,并根據(jù)圖象寫出
的單調(diào)區(qū)間;
(Ⅲ)若關(guān)于的方程
有三個(gè)不同的解,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)分別是橢圓
的左右頂點(diǎn),
為其右焦點(diǎn),
與
的等比中項(xiàng)是
,橢圓的離心率為
.
(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)的直線
與該軌跡交于
兩點(diǎn),若直線
的斜率依次成等比數(shù)列,求
的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P是拋物線x2=4y上的動(dòng)點(diǎn),點(diǎn)P在x軸上的射影是Q,點(diǎn)A(8,7),則|PA|+|PQ|的最小值為( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)|a|≤1,|x|≤1時(shí),關(guān)于x的不等式|x2﹣ax﹣a2|≤m恒成立,則實(shí)數(shù)m的取值范圍是( )
A.[ ,+∞)
B.[ ,+∞)
C.[ ,+∞)
D.[ ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)棱垂直于底面,
,
,
是棱
的中點(diǎn).
(Ⅰ)證明:平面⊥平面
;
(Ⅱ)求異面直線與
所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com