日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直線Ax+By+C=0與圓x2+y2=1相交于P,Q兩點,其中A2,C2,B2成等差數(shù)列,O為坐標原點,則
          OP
          PQ
          =
           
          考點:平面向量數(shù)量積的運算
          專題:計算題,直線與圓
          分析:由題意,直線Ax+By+C=0與圓x2+y2=2聯(lián)立,消去y,得到x的一元二次方程,求得x1x2;同理,可求得y1y2;從而求出
          OP
          PQ
          的值.
          解答: 解:設P(x1,y1),Q(x2,y2),則由方程組
          Ax+By+C=0
          x2+y2=1
          消去y,
          得(A2+B2)x2+2ACx+(C2-B2)=0,∴x1x2=
          C2-B2
          A2+B2
          ;
          Ax+By+C=0
          x2+y2=1
          消去x,得(A2+B2)y2+2BCy+(C2-A2)=0,∴y1y2=
          C2-A2
          A2+B2
          ;
          OP
          PQ
          =x1x2+y1y2=
          C2-B2
          A2+B2
          +
          C2-A2
          A2+B2
          =
          2C2-A2-B2
          A2+B2

          ∵A2,C2,B2成等差數(shù)列,
          ∴2C2=A2+B2,
          OP
          PQ
          =0.
          故答案為:0.
          點評:本題考查向量的數(shù)量積公式、二次方程的韋達定理、直線與圓的位置關系,屬于基礎題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=x3+2xf′(-1),則函數(shù)f(x)在區(qū)間[-2,3]的值域是
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知圓C:x2+y2-2x-4y-4=0,在圓C上只有兩個點到直線l:x+y+c=0的距離是
          2
          ,則c的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          若點P(x,y)在曲線
          x=1+
          5
          sinθ
          y=4+
          5
          cosθ
          (θ為參數(shù),θ∈R)上,則
          x+2
          y
          的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          以正方形的四個頂點分別作為橢圓的兩個焦點和短軸的兩個端點,A、B、M是該橢圓上的任意三點(異于橢圓頂點).若存在銳角θ,使
          OM
          =cosθ•
          OA
          +sinθ•
          OB
          ,則直線OA、OB的斜率乘積為
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知當|x|<
          1
          2
          時,有
          1
          1+2x
          =1-2x+4x2-…+(-2x)n+…,根據(jù)以上信息,若對任意|x|<
          1
          2
          ,都有
          x
          (1-x3)(1+2x)
          =a0+a1x+a2x2+…+anxn+…,則a10=
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)y=
          sin2x
          +lg(4-x2)的定義域是
           
          (結果用區(qū)間表示)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          下列說法錯誤的是( 。
          A、數(shù)據(jù)1,2,3,4,5的平均數(shù)、眾數(shù)、中位數(shù)都是3
          B、若命題p∧q為真命,則p∨q為真
          C、若p:?x∈R,x2-x+1>0,則¬p:?x0∈R,x02-x0+1≤0
          D、“若α=
          π
          3
          ,則tanα=
          3
          ”的否命題是“α=
          π
          3
          ,則tanα≠
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知動點P(a,b)在不等式組
          x+y-4<0
          x-y-2>0
          x>0
          y>0
          表示的平面區(qū)域內部運動,則
          b+3
          a-1
          的取值范圍是( 。
          A、(-
          1
          3
          ,2)
          B、(-3,2)
          C、(-∞,-
          1
          3
          )∪(2,+∞)
          D、(1,3)

          查看答案和解析>>

          同步練習冊答案