【題目】已知正數(shù)數(shù)列{xn}滿足x1= ,xn+1=
,n∈N* .
(1)求x2 , x4 , x6 .
(2)猜想數(shù)列{x2n}的單調性,并證明你的結論.
【答案】
(1)解:∵正數(shù)數(shù)列{xn}滿足x1= ,xn+1=
,n∈N*.
∴x2= =
.同理可得x4=
,x6=
(2)解:由x2≥x4≥x6.猜想:數(shù)列{x2n}的單調遞減.
下面利用數(shù)學歸納法證明:①當n=1,2時,命題成立.
②假設當n=k∈N*時命題成立,即x2k>x2k+2,xk>0.
當n=k+1時,x2k+2﹣x2k+4= ﹣
=
=
>0,即x2(k+1)>x2(k+1)+2,也就是說,當n=k+1時命題也成立.
結合①和②知命題成立
【解析】(1)由正數(shù)數(shù)列{xn}滿足x1= ,xn+1=
,n∈N* . 可得x2=
=
.同理可得x4 , x6 . (2)由x2≥x4≥x6 . 猜想:數(shù)列{x2n}的單調遞減.利用數(shù)學歸納法證明即可得出.
【考點精析】通過靈活運用數(shù)列的通項公式,掌握如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 (a>b>0)的左、右焦點分別為F1(﹣3,0)、F2(3,0),直線y=kx與橢圓交于A、B兩點.
(1)若三角形AF1F2的周長為 ,求橢圓的標準方程;
(2)若 ,且以AB為直徑的圓過橢圓的右焦點,求直線y=kx斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都是40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有一次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)作為一組,代表三次投籃的結果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.據(jù)此估計,該運動員三次投籃恰有一次命中的概率為( )
A.0.25
B.0.2
C.0.35
D.0.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)在定義域(0,+∞)上為增函數(shù),且滿足f(xy)=f(x)+f(y),f(3)=1.
(1)求f(9),f(27)的值;
(2)解不等式f(x)+f(x﹣8)<2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=1﹣ ,其中n∈N* .
(1)設bn= ,求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項公式;
(2)設cn= ,數(shù)列{cncn+2}的前n項和為Tn , 求證:Tn<3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD﹣A′B′C′D′中, .設點F在線段CC'上,直線EF與平面A'BD所成的角為α,則sinα的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,f′(x)為函數(shù)f(x)的導函數(shù).
(1)若F(x)=f(x)+b,函數(shù)F(x)在x=1處的切線方程為2x+y﹣1=0,求a,b的值;
(2)若f′(x)≤﹣x+ax恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判斷下列各組函數(shù)是否為相等函數(shù):
⑴f(x)=f(x)= ,g(x)=x﹣5;
⑵f(x)=2x+1(x∈Z),g(x)=2x+1(x∈R);
⑶f(x)=|x+1|,g(x)= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com