日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知圓O:x2+y2=4與y軸正半軸交于點(diǎn)P,A(-1,0),B(1,0),直線l與圓O切于點(diǎn)S(l不垂直于x軸),拋物線過A、B兩點(diǎn)且以l為準(zhǔn)線.

          (Ⅰ)當(dāng)點(diǎn)S在圓周上運(yùn)動(dòng)時(shí),求證:拋物線的焦點(diǎn)Q始終在某一橢圓C上,并求出該橢圓C的方程;

          (Ⅱ)設(shè)M、N是(Ⅰ)中橢圓C上除短軸端點(diǎn)外的不同兩點(diǎn),且,問:△MON的面積是否存在最大值?若存在,求出該最大值;若不存在,請(qǐng)說明理由.

          答案:
          解析:

            (Ⅰ)證明:設(shè)Q(x,y),如圖所示,作,垂直于直線l,為垂足,連結(jié)AQ,BQ,OS,則OS⊥l

            ∵OS是直角梯形B的中位線,

            ∴||+||=2|OS|

            由拋物線的定義,知||=|AQ|,||=|BQ|.

            ∴|QA|+|QB|=||+||=2|OS|=4>2=|AB|,  3分

            由橢圓的定義,得焦點(diǎn)Q在以A,B為焦點(diǎn)的橢圓

            上,且2a=4,2c=2,∴b2=3

            ∴橢圓C的方程為           5分

            (Ⅱ)∵

            ∴P、M、N三點(diǎn)共線               6分

            由題意,直線PN的斜率存在,設(shè)直線PN的方程為y=kx+2,

            代入橢圓方程,得

            由    8分

            設(shè),由韋達(dá)定理,得

            ∴

            原點(diǎn)O到直線PN的距離為    10分

            ∴

            

                               13分

            當(dāng)且僅當(dāng)時(shí),即k=±時(shí)取等號(hào).

            ∴△MON的面積有最大值        14分


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知圓O:x2+y2=1,O為坐標(biāo)原點(diǎn).
          (1)邊長(zhǎng)為
          2
          的正方形ABCD的頂點(diǎn)A、B均在圓O上,C、D在圓O外,當(dāng)點(diǎn)A在圓O上運(yùn)動(dòng)時(shí),C點(diǎn)的軌跡為E.
          ①求軌跡E的方程;
          ②過軌跡E上一定點(diǎn)P(x0,y0)作相互垂直的兩條直線l1,l2,并且使它們分別與圓O、軌跡E相交,設(shè)l1被圓O截得的弦長(zhǎng)為a,設(shè)l2被軌跡E截得的弦長(zhǎng)為b,求a+b的最大值.
          (2)正方形ABCD的一邊AB為圓O的一條弦,求線段OC長(zhǎng)度的最值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),點(diǎn)P(-1,1)為圓O上一點(diǎn).曲線C是以AB為長(zhǎng)軸,離心率為
          2
          2
          的橢圓,點(diǎn)F為其右焦點(diǎn).過原點(diǎn)O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點(diǎn)Q.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)證明:直線PQ與圓O相切.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知圓O:x2+y2=2交x軸于A、B兩點(diǎn),P在圓O上運(yùn)動(dòng)(不與A、B重合),過P作直線l1,OS垂直于l1交直線l2:x=-3于點(diǎn)S.
          (1)求證:“如果直線l1過點(diǎn)T(-1,0),那么
          OP
          PS
          =1
          ”為真命題;
          (2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分15分)如圖,已知圓Ox2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為的橢圓,其右焦點(diǎn)為F.若點(diǎn)P(-1,1)為圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點(diǎn)Q.(1)求橢圓C的標(biāo)準(zhǔn)方程;

          (2)證明:直線PQ與圓O相切.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知圓Ox2+y2=2交x軸于A,B兩點(diǎn),點(diǎn)P(-1,1)為圓O上一點(diǎn).曲線C是以AB為長(zhǎng)軸,離心率為的橢圓,點(diǎn)F為其右焦點(diǎn).

          過原點(diǎn)O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點(diǎn)Q

          (1)求橢圓C的標(biāo)準(zhǔn)方程;(2)證明:直線PQ與圓O相切.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案