日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知圓O:x2+y2=2交x軸于A、B兩點,P在圓O上運動(不與A、B重合),過P作直線l1,OS垂直于l1交直線l2:x=-3于點S.
          (1)求證:“如果直線l1過點T(-1,0),那么
          OP
          PS
          =1
          ”為真命題;
          (2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.
          分析:(1)設(shè)P(x0,y0),則x02+y02=2,當(dāng)x0=-1時,求出S的坐標(biāo),化簡
          OP
          PS 
          的解析式.當(dāng)x0≠-1時,求出S的坐標(biāo),
          化簡
          OP
          PS 
          的解析式.
          (2)先寫出逆命題,設(shè)S(-3,t),P(x0,y0)(y0≠0),由
          OP
          PS 
          =1,及x02+y02=2,得出t=
          3+3x0
          y0

          當(dāng)當(dāng)x0=-1時,直線l1的方程知過點(-1,0);當(dāng)x0≠-1時,由直線l1的方程知過點(-1,0).
          解答:證明:(1)設(shè)P(x0,y0)(y0≠0),則x02+y02=2.當(dāng)x0=-1時,
          ∵直線l1過點T(-1,0),∴S(-3,0),即
          PS
          =(-3-x0,-y0)
          ,
          OP
          PS
          =-3x0-x02-y0
          2=1.
          當(dāng)x0≠-1時,∵直線l1過點T(-1,0),∴直線l1的斜率k1=
          y0
          x0+1
          ,
          ∴直線OS的斜率k=-
          x0+1
          y0
          ,其方程為 y=-
          x0+1
          y0
          x,
          S(-3,
          3x0+3
          y0
          )
          ,即
          PS
          =(-3-x0,
          3x0+3
          y0
          -y0)

          OP
          PS
          =-3x0-x02+3x0+3-y02=3-2=1.
          故“如果直線l1過點T(-1,0),那么
          OP
          PS
          =1”為真命題.

          (2)逆命題為:如果
          OP
          PS
          =1,那么直線l1過點T(-1,0).逆命題也為真命題,以下給出證明:
          設(shè)S(-3,t),P(x0,y0)(y0≠0),則
          PS
          =(-3-x0,t-y0)
          ,
          OP
          PS
          =1,∴-3x0-x02+ty0-y02=1,又x02+y02=2,
          ∴t=
          3+3x0
          y0
          .當(dāng)x0=-1時,直線l1的方程為x=-1,顯然過點(-1,0);
          當(dāng)x0≠-1時,直線OS的斜率k=
          x0+1
          -y0
          ,∴直線l1的方程為y-y0=
          y0
          x0+1
          (x-x0)
          ,令y=0,得x=-1,
          ∴直線l1過定點(-1,0).綜上,直線l1恒過定點(-1,0).
          點評:本題考查直線和圓相交的性質(zhì),四種命題的真假關(guān)系,兩個向量的數(shù)量積的運算以及求兩直線交點的坐標(biāo).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知圓O:x2+y2=1,O為坐標(biāo)原點.
          (1)邊長為
          2
          的正方形ABCD的頂點A、B均在圓O上,C、D在圓O外,當(dāng)點A在圓O上運動時,C點的軌跡為E.
          ①求軌跡E的方程;
          ②過軌跡E上一定點P(x0,y0)作相互垂直的兩條直線l1,l2,并且使它們分別與圓O、軌跡E相交,設(shè)l1被圓O截得的弦長為a,設(shè)l2被軌跡E截得的弦長為b,求a+b的最大值.
          (2)正方形ABCD的一邊AB為圓O的一條弦,求線段OC長度的最值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知圓O:x2+y2=2交x軸于A,B兩點,點P(-1,1)為圓O上一點.曲線C是以AB為長軸,離心率為
          2
          2
          的橢圓,點F為其右焦點.過原點O作直線PF的垂線交橢圓C的右準線l于點Q.
          (1)求橢圓C的標(biāo)準方程;
          (2)證明:直線PQ與圓O相切.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分15分)如圖,已知圓Ox2+y2=2交x軸于A,B兩點,曲線C是以AB為長軸,離心率為的橢圓,其右焦點為F.若點P(-1,1)為圓O上一點,連結(jié)PF,過原點O作直線PF的垂線交橢圓C的右準線l于點Q.(1)求橢圓C的標(biāo)準方程;

          (2)證明:直線PQ與圓O相切.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知圓Ox2+y2=2交x軸于A,B兩點,點P(-1,1)為圓O上一點.曲線C是以AB為長軸,離心率為的橢圓,點F為其右焦點.

          過原點O作直線PF的垂線交橢圓C的右準線l于點Q

          (1)求橢圓C的標(biāo)準方程;(2)證明:直線PQ與圓O相切.

          查看答案和解析>>

          同步練習(xí)冊答案