已知函數(shù).
(I)討論的單調(diào)性;
(Ⅱ)若在(1,+
)恒成立,求實(shí)數(shù)a的取值范圍.
(I)當(dāng)時(shí),
在
上是增函數(shù).在
上是減函數(shù).當(dāng)
時(shí),
在
上是增函數(shù).(II)
.
解析試題分析:(I)首先應(yīng)明確函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e2/0/cnw1f.png" style="vertical-align:middle;" />,
其次求導(dǎo)數(shù),討論①當(dāng)時(shí),②當(dāng)
時(shí),
導(dǎo)函數(shù)值的正負(fù),求得函數(shù)的單調(diào)性.
(II)注意到,即
,構(gòu)造函數(shù)
,研究其單調(diào)性
在
為增函數(shù),從而由
,得到
.
試題解析:(I)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e2/0/cnw1f.png" style="vertical-align:middle;" />,
由于
①當(dāng),即
時(shí),
恒成立,
所以在
上都是增函數(shù);
②當(dāng),即
時(shí),
由得
或
,
又由得
,
所以在
上是增函數(shù).在
上是減函數(shù).
綜上知當(dāng)時(shí),
在
上是增函數(shù).在
上是減函數(shù).
當(dāng)時(shí),
在
上是增函數(shù).
(II),即
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/2/1iu3z3.png" style="vertical-align:middle;" />,
所以
令,則
在上,
,得
,即
,
故在
為增函數(shù),
,
所以.
考點(diǎn):一元二次不等式的解法,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中
.
(1)當(dāng)時(shí),求函數(shù)
在
處的切線方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求
的取值范圍;
(3)已知,如果存在
,使得函數(shù)
在
處取得最小值,試求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
,
,其中
,且
.
⑴當(dāng)時(shí),求函數(shù)
的最大值;
⑵求函數(shù)的單調(diào)區(qū)間;
⑶設(shè)函數(shù)若對(duì)任意給定的非零實(shí)數(shù)
,存在非零實(shí)數(shù)
(
),使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若曲線在x=l和x=3處的切線互相平行,求a的值及函數(shù)
的單調(diào)區(qū)間;
(2)設(shè),若對(duì)任意
,均存在
,使得
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù).
(1)若,函數(shù)
在區(qū)間
上是單調(diào)遞增函數(shù),求實(shí)數(shù)
的取值范圍;
(2)設(shè),若對(duì)任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(
).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:當(dāng)時(shí),對(duì)于任意
,總有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線
的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè),求
在區(qū)間
上的最大值(其中e為自然對(duì)的底數(shù))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求
的極值;(2)當(dāng)
時(shí),討論
的單調(diào)性;
(3)若對(duì)任意的恒有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com