日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分“優(yōu)秀、合格、尚待改進(jìn)”三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下: 表1:男生表2:女生

          等級(jí)

          優(yōu)秀

          合格

          尚待改進(jìn)

          等級(jí)

          優(yōu)秀

          合格

          尚待改進(jìn)

          頻數(shù)

          15

          x

          5

          頻數(shù)

          15

          3

          y


          (1)從表二的非優(yōu)秀學(xué)生中隨機(jī)選取2人交談,求所選2人中恰有1人測(cè)評(píng)等級(jí)為合格的概率;
          (2)由表中統(tǒng)計(jì)數(shù)據(jù)填寫下邊2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.

          男生

          女生

          總計(jì)

          優(yōu)秀

          非優(yōu)秀

          總計(jì)

          參考數(shù)據(jù)與公式:
          K2= ,其中n=a+b+c+d.
          臨界值表:

          P(K2>k0

          0.05

          0.05

          0.01

          k0

          2.706

          3.841

          6.635

          【答案】
          (1)解:設(shè)從高一年級(jí)男生中抽出m人,則 = ,m=25,

          ∴x=25﹣20=5,y=20﹣18=2,

          表2中非優(yōu)秀學(xué)生共5人,記測(cè)評(píng)等級(jí)為合格的3人為a,b,c,尚待改進(jìn)的2人為A,B,

          則從這5人中任選2人的所有可能結(jié)果為:(a,b)(a,c)(b,c)(A,B)(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共10種.

          設(shè)事件C表示“從表二的非優(yōu)秀學(xué)生5人中隨機(jī)選取2人,恰有1人測(cè)評(píng)等級(jí)為合格”,

          則C的結(jié)果為:(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共6種.

          ∴P(C)= = ,故所求概率為

          男生

          女生

          總計(jì)

          優(yōu)秀

          15

          15

          30

          非優(yōu)秀

          10

          5

          15

          總計(jì)

          25

          20

          45


          (2)解:∵1﹣0.9=0.1,p(k2>2.706)=0.10,

          而K2= = = =1.125<2.706,

          所以沒(méi)有90%的把握認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.

          思路點(diǎn)撥(1)由題意可得非優(yōu)秀學(xué)生共5人,記測(cè)評(píng)等級(jí)為合格的3人為a,b,c,尚待改進(jìn)的2人為A,B,則從這5人中任選2人的所有可能結(jié)果為10個(gè),設(shè)事件C表示“從表二的非優(yōu)秀學(xué)生5人中隨機(jī)選取2人,恰有1人測(cè)評(píng)等級(jí)為合格”,則C的結(jié)果為6個(gè),根據(jù)概率公式即可求解.(2)由2×2列聯(lián)表直接求解即可


          【解析】(1)由題意可得非優(yōu)秀學(xué)生共5人,記測(cè)評(píng)等級(jí)為合格的3人為a,b,c,尚待改進(jìn)的2人為A,B,則從這5人中任選2人的所有可能結(jié)果為10個(gè),設(shè)事件C表示“從表二的非優(yōu)秀學(xué)生5人中隨機(jī)選取2人,恰有1人測(cè)評(píng)等級(jí)為合格”,則C的結(jié)果為6個(gè),根據(jù)概率公式即可求解.(2)由2×2列聯(lián)表直接求解即可.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知命題p:關(guān)于x的方程x2﹣ax+4=0有實(shí)根;命題q:關(guān)于x的函數(shù)y=2x2+ax+4在[3,+∞)上是增函數(shù),若p∧q是真命題,則實(shí)數(shù)a的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù) (其中為自然對(duì)數(shù)的底數(shù), )

          (1) 設(shè)函數(shù),討論函數(shù)的零點(diǎn)個(gè)數(shù);

          (2) 時(shí),不等式恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
          (1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
          (2)設(shè)直線l與曲線C交于M,N兩點(diǎn),點(diǎn)A(1,0),求 + 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)圓x2+y2=2的切線l與軸的正半軸、軸的正半軸分別交于點(diǎn)A、B,當(dāng)|AB|取最小值時(shí),切線l的方程為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C1 , 拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)O,從每條曲線上各取兩個(gè)點(diǎn),其坐標(biāo)分別是(3,一2 ),(一2,0),(4,一4),( ). (Ⅰ)求C1 , C2的標(biāo)準(zhǔn)方程;
          (Ⅱ)是否存在直線L滿足條件:①過(guò)C2的焦點(diǎn)F;②與C1交與不同的兩點(diǎn)M,N且滿足 ?若存在,求出直線方程;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知在正四棱錐中, 為側(cè)棱的中點(diǎn), 連接相交于點(diǎn)

          (1)證明: ;

          (2)證明: ;

          (3)設(shè),若質(zhì)點(diǎn)從點(diǎn)沿平面與平面的表 面運(yùn)動(dòng)到點(diǎn)的最短路徑恰好經(jīng)過(guò)點(diǎn)求正四棱錐 的體積。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)的定義域?yàn)?/span>D,若存在閉區(qū)間 ,使得函數(shù)同時(shí)滿足:

          1內(nèi)是單調(diào)函數(shù);

          2上的值域?yàn)?/span>,則稱區(qū)間的“倍值區(qū)間”.

          下列函數(shù)中存在“3倍值區(qū)間”的有_____.

          ;;;.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】近年來(lái),隨著我市經(jīng)濟(jì)的快速發(fā)展,政府對(duì)民生也越來(lái)越關(guān)注. 市區(qū)現(xiàn)有一塊近似正三角形土地ABC(如圖所示),其邊長(zhǎng)為2百米,為了滿足市民的休閑需求,市政府?dāng)M在三個(gè)頂點(diǎn)處分別修建扇形廣場(chǎng),即扇形DBEDAGECF,其中、分別相切于點(diǎn)DE,且無(wú)重疊,剩余部分(陰影部分)種植草坪. 設(shè)BD長(zhǎng)為x(單位:百米,草坪面積為S(單位:百米2).

          (1)試用x分別表示扇形DAGDBE的面積,并寫出x的取值范圍;

          (2)當(dāng)x為何值時(shí),草坪面積最大?并求出最大面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案