【題目】已知圓錐曲線 (
是參數(shù))和定點(diǎn)
,
、
是圓錐曲線的左、右焦點(diǎn).
(1)求經(jīng)過點(diǎn) 且垂直于直線
的直線
的參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,求直線
的極坐標(biāo)方程.
【答案】
(1)解:圓錐曲線 化為普通方程
,所以
,則直線
的斜率
,于是經(jīng)過點(diǎn)
且垂直于直線
的直線
的斜率
,直線
的傾斜角是
.所以直線
的參數(shù)方程是
(
為參數(shù)),
即 (
為參數(shù)).
(2)解:直線 的斜率
,傾斜角是
,設(shè)
是直線
上任一點(diǎn),則
,即
,則
【解析】(1)由圓錐曲線C的參數(shù)方程化為直角坐標(biāo)方程可得F2(1,0),利用截距式即可得出直線AF2的直角坐標(biāo)方程.最后求出點(diǎn)斜式直線方程,最后轉(zhuǎn)換為參數(shù)方程.
(2)直接把直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程.本題考查了橢圓的參數(shù)方程、直線的截距式與參數(shù)方程、參數(shù)的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.
【考點(diǎn)精析】通過靈活運(yùn)用橢圓的參數(shù)方程,掌握橢圓的參數(shù)方程可表示為
即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|log3x|,實(shí)數(shù)m,n滿足0<m<n,且f(m)=f(n),若f(x)在[m2 , n]上的最大值為2,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 中,
,
,點(diǎn)
是
上的動(dòng)點(diǎn).現(xiàn)將矩形
沿著對(duì)角線
折成二面角
,使得
.
(Ⅰ)求證:當(dāng) 時(shí),
;
(Ⅱ)試求 的長(zhǎng),使得二面角
的大小為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓和雙曲線有共同焦點(diǎn) ,
是它們的一個(gè)交點(diǎn),且
,記橢圓和雙曲線的離心率分別為
,則
的最大值為( )
A.
B.
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),滿足f(﹣ +x)=f(
+x),當(dāng)x∈[0,
]時(shí),f(x)=ln(x2﹣x+1),則函數(shù)f(x)在區(qū)間[0,6]上的零點(diǎn)個(gè)數(shù)是( )
A.3
B.5
C.7
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍是( )
A.(4,2018)
B.(4,2020)
C.(3,2020)
D.(2,2020)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義一個(gè)集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個(gè)數(shù),給出下列命題:①對(duì)于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,則P(A)∩P(B)=;④若A B,,則P(A)
P(B);⑤若n(A)-n(B)=1,則n[P(A)]=2×n[P(B)]其中正確的命題個(gè)數(shù)為( )。
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐 ,底面
為菱形,
平面
,
,
為
的中點(diǎn),
.
(I)求證:直線 平面
;
(II)求直線 與平面
所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com