日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=(x2+ax+b)ex(x∈R).
          (1)若a=1,b=-1,求函數(shù)f(x)的極值;
          (2)若2a+b=-3,試確定f(x)的單調(diào)性;
          (3)記數(shù)學公式,且g(x)在[-1,1]上的最大值為M,證明:數(shù)學公式

          解:(1)若a=1,b=-1,則f(x)=(x2+x-1)ex
          有f'(x)=(2x+1)ex+(x2+x-1)ex=ex(x2+3x)
          令f'(x)=0得x1=-3,x2=0(1分)
          ∵當x∈(-∞,-3)時f'(x)>0,當x∈(-3,0)時f'(x)<0,當x∈(0,+∞)時,f'(x)>0
          ∴當x=-3時,函數(shù)f(x)有極大值,,(2分)
          當x=0時,函數(shù)f(x)有極小值,f(x)極小值=f(0)=-(13分)
          (2)∵2a+b=-3即b=-2a-3
          又f'(x)=(2x+a)ex+(x2+ax+b)ex=ex[x2+(2+a)x+(a+b)]
          ∴f'(x)=ex[x2+(2+a)x+(-3-a)]=ex(x-1)[x+(3+a)](5分)
          當-3-a=1即a=-4時,f'(x)=ex(x-1)2≥0
          ∴函數(shù)f(x)在(-∞,+∞)上單調(diào)遞增;(6分)
          當-3-a>1,即a<-4時,由f'(x)>0得x>-3-a或x<1,
          由f'(x)<0得1<x<-3-a;(7分)
          當-3-a<1,即a>-4時,由f'(x)>0得x<-3-a或x>1,
          由f'(x)<0得-3-a<x<1;(8分)
          綜上得:當a=-4時,函數(shù)f(x)在(-∞,+∞)上單調(diào)遞增;
          當a<-4時,函數(shù)f(x)在(-∞,1)和(-3-a,+∞)上單調(diào)遞增,在(1,-3-a)上單調(diào)遞減-(9分)
          當a>-4時,函數(shù)f(x)在(-∞,-3-a)和(1,+∞)上單調(diào)遞增,在(-3-a,1)上單調(diào)遞減.(10分)
          (3)根據(jù)題意=|x2+ax+b|,
          ∵g(x)在[-1,1]上的最大值為M,
          ∴g(-1)≤M,g(0)≤M,g(1)≤M
          即|1-a+b|≤M,|b|≤M,|1+a+b|≤M(12分)
          2=|(1-a+b)+(1+a+b)-2b|≤|1-a+b|+|1+a+b|+|2b|≤4M
          (17分)(其它解法請參照給分)
          分析:(1)先把a=1,b=-1代入函數(shù)解析式,再研究f′(x)的符號,利用導數(shù)求解f(x)在R上的極值問題即可.
          (2)先對函數(shù)y=f(x)進行求導,然后令導函數(shù)大于0(或小于0)求出x的范圍,根據(jù)f′(x)>0求得的區(qū)間是單調(diào)增區(qū)間,f′(x)<0求得的區(qū)間是單調(diào)減區(qū)間,即可得到答案.
          (3)先根據(jù)題意=|x2+ax+b|,及g(x)在[-1,1]上的最大值為M,得到:g(-1)≤M,g(0)≤M,g(1)≤M再結(jié)合絕對值不等式的性質(zhì)即可求得
          點評:本題主要考查了利用導數(shù)研究函數(shù)的極值,以及函數(shù)單調(diào)區(qū)間等有關(guān)基礎(chǔ)知識,考查運算求解能力,屬于中檔題.研究單調(diào)性的關(guān)鍵是導函數(shù)的正負與原函數(shù)的單調(diào)性之間的關(guān)系,即當導函數(shù)大于0時原函數(shù)單調(diào)遞增,當導函數(shù)小于0時原函數(shù)單調(diào)遞減.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
          f(-
          3
          4
          ) <f(
          15
          2
          )

          ②當x∈[-1,0]時f(x)=x3+4x+3;
          ③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構(gòu)成一個無窮等差數(shù)列;
          ④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
          其中真命題的個數(shù)為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年江蘇省蘇、錫、常、鎮(zhèn)四市高三調(diào)研數(shù)學試卷(一)(解析版) 題型:解答題

          設(shè)函數(shù)f(x)=x(x-1)2,x>0.
          (1)求f(x)的極值;
          (2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
          (3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實數(shù)m有且只有一個,求實數(shù)m和t的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年江蘇省蘇州市高考數(shù)學一模試卷(解析版) 題型:解答題

          設(shè)函數(shù)f(x)=x(x-1)2,x>0.
          (1)求f(x)的極值;
          (2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
          (3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實數(shù)m有且只有一個,求實數(shù)m和t的值.

          查看答案和解析>>

          同步練習冊答案