日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)橢圓的兩個焦點(diǎn)是F1(-c,0),F(xiàn)2(c,0)(c>0),且橢圓上存在點(diǎn)P,使得直線PF1與直線PF2垂直.
          (I)求實(shí)數(shù)m的取值范圍.
          (II)設(shè)l是相應(yīng)于焦點(diǎn)F2的準(zhǔn)線,直線PF2與l相交于點(diǎn)Q.若,求直線PF2的方程.
          【答案】分析:(1)根據(jù)直線PF1⊥直線PF2推斷以O(shè)為圓心以c為半徑的圓與橢圓有交點(diǎn),兩個方程聯(lián)立,表示出x2,進(jìn)而根據(jù)0≤x2<a2確定m的范圍.
          (2)設(shè)P(x,y),直線PF2方程為:y=k(x-c),根據(jù)直線l的方程求得點(diǎn)Q的坐標(biāo),根據(jù)可推斷出點(diǎn)P分有向線段所成比為,進(jìn)而根據(jù)Q和F2的坐標(biāo)求得點(diǎn)P的坐標(biāo),代入橢圓方程求得k,直線PF2的方程可得.
          解答:解:(1)∵直線PF1⊥直線PF2
          ∴以O(shè)為圓心以c為半徑的圓:x2+y2=c2與橢圓:有交點(diǎn).即有解
          又∵c2=a2-b2=m+1-1=m>0

          ∴m≥1
          (2)設(shè)P(x,y),直線PF2方程為:y=k(x-c)
          ∵直線l的方程為:
          ∴點(diǎn)Q的坐標(biāo)為(

          ∴點(diǎn)P分有向線段所成比為
          ∵F2,0),Q(
          ∴P(
          ∵點(diǎn)P在橢圓上∴

          直線PF2的方程為:y=(x-).
          點(diǎn)評:本題主要考查了直線與圓錐曲線的綜合問題.考查了學(xué)生綜合分析問題和基本的運(yùn)算能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)F1,F(xiàn)2為橢圓
          x2
          2
          +y2=1
          的兩個焦點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),圓O是以F1,F(xiàn)2為直徑的圓,一條直線與圓O相切并與橢圓交于不同的兩點(diǎn)A,B.
          (1)設(shè)b=f(k),求f(k)的表達(dá)式;
          (2)若
          OA
          OB
          =
          2
          3
          ,求直線l的方程;
          (3)若
          OA
          OB
          =m,(
          2
          3
          ≤m≤
          3
          4
          )
          ,求三角形OAB面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          下列說法中,正確的有
           

          ①若點(diǎn)P(x0,y0)是拋物線y2=2px上一點(diǎn),則該點(diǎn)到拋物線的焦點(diǎn)的距離是|PF|=x0+
          p
          2
          ;
          ②設(shè)F1、F2為雙曲線
          x2
          a2
          -
          y2
          b2
          =1的兩個焦點(diǎn),P(x0,y0)為雙曲線上一動點(diǎn),∠F1PF2=θ,則△PF1F2的面積為b2tan
          θ
          2
          ;
          ③設(shè)定圓O上有一動點(diǎn)A,圓O內(nèi)一定點(diǎn)M,AM的垂直平分線與半徑OA的交點(diǎn)為點(diǎn)P,則P的軌跡為一橢圓;
          ④設(shè)拋物線焦點(diǎn)到準(zhǔn)線的距離為p,過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),則
          1
          |AF|
          1
          p
          、
          1
          |BF|
          成等差數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點(diǎn)P.

          (1)試用a表示點(diǎn)P的坐標(biāo);

          (2)設(shè)A、B是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;

          (3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個. 設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省臺州中學(xué)高三(上)第二次統(tǒng)練數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知點(diǎn)F1,F(xiàn)2為橢圓的兩個焦點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),圓O是以F1,F(xiàn)2為直徑的圓,一條直線與圓O相切并與橢圓交于不同的兩點(diǎn)A,B.
          (1)設(shè)b=f(k),求f(k)的表達(dá)式;
          (2)若,求直線l的方程;
          (3)若,求三角形OAB面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省臺州中學(xué)(上)第二次統(tǒng)練數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知點(diǎn)F1,F(xiàn)2為橢圓的兩個焦點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),圓O是以F1,F(xiàn)2為直徑的圓,一條直線與圓O相切并與橢圓交于不同的兩點(diǎn)A,B.
          (1)設(shè)b=f(k),求f(k)的表達(dá)式;
          (2)若,求直線l的方程;
          (3)若,求三角形OAB面積的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案