日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 某倉(cāng)庫(kù)為了保持庫(kù)內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是個(gè)半圓,固定點(diǎn)E為CD的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿(MN和AB、DC不重合).
          (1)當(dāng)MN和AB之間的距離為1米時(shí),求此時(shí)三角通風(fēng)窗EMN的通風(fēng)面積;
          (2)設(shè)MN與AB之間的距離為x米,試將三角通風(fēng)窗EMN的通風(fēng)面積S(平方米)表示成關(guān)于x的函數(shù)S=f(x);
          (3)當(dāng)MN與AB之間的距離為多少米時(shí),三角通風(fēng)窗EMN的通風(fēng)面積最大?并求出這個(gè)最大面積.

          【答案】分析:(1)當(dāng)MN和AB之間的距離為1米時(shí),MN應(yīng)位于DC上方,且此時(shí)△EMN中MN邊上的高為0.5米,從而可求MN的長(zhǎng),由三角形面積公式求面積
          (2)當(dāng)MN在矩形區(qū)域內(nèi)滑動(dòng),即時(shí),由三角形面積公式建立面積模型.當(dāng)MN在半圓形區(qū)域內(nèi)滑動(dòng),即時(shí),由三角形面積公式建立面積模型.
          (3)根據(jù)分段函數(shù),分別求得每段上的最大值,最后取它們當(dāng)中最大的,即為原函數(shù)的最大值,并明確取值的狀態(tài),從而得到實(shí)際問(wèn)題的建設(shè)方案.
          解答:解:(1)由題意,當(dāng)MN和AB之間的距離為1米時(shí),MN應(yīng)位于DC上方,且此時(shí)△EMN中MN邊上的高為0.5米,又因?yàn)镋M=EN=1米,所以MN=米,所以,即三角通風(fēng)窗EMN的通風(fēng)面積為
          (2)當(dāng)MN在矩形區(qū)域內(nèi)滑動(dòng),即時(shí),△EMN的面積;
          當(dāng)MN在半圓形區(qū)域內(nèi)滑動(dòng),即時(shí),△EMN的面積
          綜上可得;
          (3)當(dāng)MN在矩形區(qū)域內(nèi)滑動(dòng)時(shí),f(x)在區(qū)間上單調(diào)遞減,則f(x)<f(0)=;
          當(dāng)MN在半圓形區(qū)域內(nèi)滑動(dòng),等號(hào)成立時(shí),
          因此當(dāng)(米)時(shí),每個(gè)三角形得到最大通風(fēng)面積為平方米.
          點(diǎn)評(píng):本題主要考查函數(shù)模型的建立與應(yīng)用,主要涉及了三角形面積公式,分段函數(shù)求最值以及基本不等式法等解題方法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009•普陀區(qū)二模)某倉(cāng)庫(kù)為了保持庫(kù)內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是個(gè)半圓,固定點(diǎn)E為CD的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿(MN和AB、DC不重合).
          (1)當(dāng)MN和AB之間的距離為1米時(shí),求此時(shí)三角通風(fēng)窗EMN的通風(fēng)面積;
          (2)設(shè)MN與AB之間的距離為x米,試將三角通風(fēng)窗EMN的通風(fēng)面積S(平方米)表示成關(guān)于x的函數(shù)S=f(x);
          (3)當(dāng)MN與AB之間的距離為多少米時(shí),三角通風(fēng)窗EMN的通風(fēng)面積最大?并求出這個(gè)最大面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•靜安區(qū)一模)某倉(cāng)庫(kù)為了保持庫(kù)內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿.
          (1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
          (2)求△EMN的面積S(平方米)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•靜安區(qū)一模)某倉(cāng)庫(kù)為了保持庫(kù)內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是正方形,其中AB=2米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿.
          (1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
          (2)求△EMN的面積S(平方米)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013年上海市靜安區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

          某倉(cāng)庫(kù)為了保持庫(kù)內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是正方形,其中AB=2米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿.
          (1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
          (2)求△EMN的面積S(平方米)的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案