日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

          已知圓的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.

          (1)求直線(xiàn)的普通方程和圓的極坐標(biāo)方程;

          (2)求直線(xiàn)與圓的交點(diǎn)的極坐標(biāo).

          【答案】(1);(2).

          【解析】分析:(1)由圓C的參數(shù)方程消去得到圓C的普通方程,之后應(yīng)用極坐標(biāo)與平面直角坐標(biāo)之間的關(guān)系式求得圓C的極坐標(biāo)方程,利用極坐標(biāo)與直角坐標(biāo)的關(guān)系將直線(xiàn)的極坐標(biāo)方程化為平面直角坐標(biāo)方程,從而求得結(jié)果;

          (2)該題有兩種方法,一種是聯(lián)立直線(xiàn)與圓的平面直角坐標(biāo)方程,解方程組求得交點(diǎn)的坐標(biāo),之后將平面直角坐標(biāo)轉(zhuǎn)化為極坐標(biāo),從而求得結(jié)果,一種是聯(lián)立直線(xiàn)與圓的極坐標(biāo)方程,解方程組求得結(jié)果.

          詳解:(1)由得:

          所以直線(xiàn)的普通方程為;

          因?yàn)閳A的參數(shù)方程為為參數(shù)),

          所以圓的普通方程為,

          所以,即

          所以圓的極坐標(biāo)方程為.

          (2)解法一:

          聯(lián)立解得:,

          直線(xiàn)與圓的交點(diǎn)的直角坐標(biāo)為:,

          所以直線(xiàn)與圓的交點(diǎn)的極坐標(biāo)為:,.

          解法二:

          聯(lián)立得:

          ,

          ,

          所以,

          ,

          所以,即,

          所以

          當(dāng)時(shí),

          當(dāng)時(shí),

          所以直線(xiàn)與圓的交點(diǎn)的極坐標(biāo)為:,.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】觀察下列等式:12=1,12﹣22=﹣3,12﹣22+32=6,12﹣22+32﹣42=﹣10,…由以上等式推測(cè)到一個(gè)一般的結(jié)論:對(duì)于n∈N* , 12﹣22+32﹣42+…+(﹣1)n+1n2=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】張三同學(xué)從每年生日時(shí)對(duì)自己的身高測(cè)量后記錄如表:

          附:回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)公式分別為:,

          (1)求身高關(guān)于年齡的線(xiàn)性回歸方程;(可能會(huì)用到的數(shù)據(jù):(cm))

          (2)利用(1)中的線(xiàn)性回歸方程,分析張三同學(xué)歲起到歲身高的變化情況,如 歲之前都符合這一變化,請(qǐng)預(yù)測(cè)張三同學(xué) 歲時(shí)的身高

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一支車(chē)隊(duì)有輛車(chē),某天依次出發(fā)執(zhí)行運(yùn)輸任務(wù)。第一輛車(chē)于下午時(shí)出發(fā),第二輛車(chē)于下午時(shí)分出發(fā),第三輛車(chē)于下午時(shí)分出發(fā),以此類(lèi)推。假設(shè)所有的司機(jī)都連續(xù)開(kāi)車(chē),并都在下午時(shí)停下來(lái)休息.

          到下午時(shí),最后一輛車(chē)行駛了多長(zhǎng)時(shí)間?

          如果每輛車(chē)的行駛速度都是,這個(gè)車(chē)隊(duì)當(dāng)天一共行駛了多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直三棱柱A1B1C1﹣ABC中, ,AB=AC=AA1=1,已知G和E分別為A1B1和CC1的中點(diǎn),D與F分別為線(xiàn)段AC和AB上的動(dòng)點(diǎn)(不包括端點(diǎn)),若GD⊥EF,則線(xiàn)段DF的長(zhǎng)度的取值范圍為(
          A.[ ,1)
          B.[ ,1]
          C.( ,1)
          D.[ ,1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù),,記.

          1)求曲線(xiàn)處的切線(xiàn)方程;

          2)求函數(shù)的單調(diào)區(qū)間;

          3)當(dāng)時(shí),若函數(shù)沒(méi)有零點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)).

          (1)若,函數(shù)的最大值為,最小值為,求的值;

          (2)當(dāng)時(shí),函數(shù)的最大值為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知雙曲線(xiàn) 與雙曲線(xiàn) 的離心率相同,且雙曲線(xiàn)C2的左、右焦點(diǎn)分別為F1 , F2 , M是雙曲線(xiàn)C2一條漸近線(xiàn)上的某一點(diǎn),且OM⊥MF2 , ,則雙曲線(xiàn)C2的實(shí)軸長(zhǎng)為(
          A.4
          B.
          C.8
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù).

          (1)求實(shí)數(shù)的值;

          (2)若,不等式上恒成立,求實(shí)數(shù)的取值范圍;

          (3)若 上最小值為,求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案