【題目】已知各項(xiàng)不為零的數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=1,Sn=panan+1(n∈N*),p∈R.
(1)若a1 , a2 , a3成等比數(shù)列,求實(shí)數(shù)p的值;
(2)若a1 , a2 , a3成等差數(shù)列,
①求數(shù)列{an}的通項(xiàng)公式;
②在an與an+1間插入n個(gè)正數(shù),共同組成公比為qn的等比數(shù)列,若不等式(qn)(n+1)(n+a)≤e對(duì)任意的n∈N*恒成立,求實(shí)數(shù)a的最大值.
【答案】
(1)
解:當(dāng)n=1時(shí),a1=pa1a2, ,當(dāng)n=2時(shí),a1+a2=pa2a3,
,
由 得
,即p2+p﹣1=0,解得:
(2)
解:①由2a2=a1+a3得 ,故a2=2,a3=3,所以
,
當(dāng)n≥2時(shí), ,
因?yàn)閍n≠0,所以an+1﹣an﹣1=2
故數(shù)列{an}的所有奇數(shù)項(xiàng)組成以1為首項(xiàng)2為公差的等差數(shù)列,
其通項(xiàng)公式
同理,數(shù)列{an}的所有偶數(shù)項(xiàng)組成以2為首項(xiàng)2為公差的等差數(shù)列,
其通項(xiàng)公式是
所以數(shù)列{an}的通項(xiàng)公式是an=n
②an=n,在n與n+1間插入n個(gè)正數(shù),組成公比為qn的等比數(shù)列,故有 ,
即
所以 ,即
,兩邊取對(duì)數(shù)得
,
分離參數(shù)得 恒成立
令 ,x∈(1,2],則
,x∈(1,2],…(12分)
令 ,x∈(1,2],則
,
下證 ,x∈(1,2],
令 ,則
,所以g(x)>0,
即 ,用
替代x可得
,x∈(1,2],
所以 ,所以f(x)在(1,2]上遞減,
所以
【解析】(1)利用遞推關(guān)系、等比數(shù)列的性質(zhì)即可得出p.(2)①利用遞推關(guān)系、等差數(shù)列的性質(zhì)即可得出an . ②an=n,在n與n+1間插入n個(gè)正數(shù),組成公比為qn的等比數(shù)列,故有 ,即
,即
,兩邊取對(duì)數(shù)得
,分離參數(shù)得
恒成立.令
,x∈(1,2],則
,x∈(1,2],令
,x∈(1,2],利用導(dǎo)數(shù)研究其單調(diào)性極值與最值即可得出.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用數(shù)列的通項(xiàng)公式,掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是公差不為零的等差數(shù)列,滿足
數(shù)列
的通項(xiàng)公式為
(1)求數(shù)列的通項(xiàng)公式;
(2)將數(shù)列,
中的公共項(xiàng)按從小到大的順序構(gòu)成數(shù)列
,請(qǐng)直接寫出數(shù)列
的通項(xiàng)公式;
(3)記,是否存在正整數(shù)
,使得
成等差數(shù)列?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
.
(I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;
(II)解關(guān)于x的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一座橋的截面圖,橋的路面由三段曲線構(gòu)成,曲線AB和曲線DE分別是頂點(diǎn)在路面A、E的拋物線的一部分,曲線BCD是圓弧,已知它們?cè)诮狱c(diǎn)B、D處的切線相同,若橋的最高點(diǎn)C到水平面的距離H=6米,圓弧的弓高h(yuǎn)=1米,圓弧所對(duì)的弦長(zhǎng)BD=10米.
(1)求弧 所在圓的半徑;
(2)求橋底AE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的最大值是____________.
【答案】
【解析】∵圓C的方程可化為(x-4)2+y2=1,∴圓C的圓心為(4,0),半徑為1.由題意知,直線y=kx-2上至少存在一點(diǎn)A(x0,kx0-2),以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),∴存在x0∈R,使得AC≤1+1成立,即ACmin≤2.
∵ACmin即為點(diǎn)C到直線y=kx-2的距離,
∴≤2,解得0≤k≤
.∴k的最大值是
.
【題型】填空題
【結(jié)束】
15
【題目】在平面直角坐標(biāo)系中,直線
.
(1)若直線與直線
平行,求實(shí)數(shù)
的值;
(2)若,
,點(diǎn)
在直線
上,已知
的中點(diǎn)在
軸上,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M:與
軸相切.
(1)求的值;
(2)求圓M在軸上截得的弦長(zhǎng);
(3)若點(diǎn)是直線
上的動(dòng)點(diǎn),過(guò)點(diǎn)
作直線
與圓M相切,
為切點(diǎn),求四邊形
面積的最小值.
【答案】(1) (2)
(3)
【解析】試題分析:(1)先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用直線和圓相切進(jìn)行求解;(2) 令,得到關(guān)于
的一元二次方程進(jìn)行求解;(3)將四邊形的面積的最小值問(wèn)題轉(zhuǎn)化為點(diǎn)到直線的的距離進(jìn)行求解.
試題解析:(1) ∵圓M:
與
軸相切
∴ ∴
(2) 令,則
∴
∴
(3)
∵的最小值等于點(diǎn)
到直線
的距離,
∴ ∴
∴四邊形面積的最小值為
.
【題型】解答題
【結(jié)束】
20
【題目】在平面直角坐標(biāo)系中,圓
的方程為
,且圓
與
軸交于
,
兩點(diǎn),設(shè)直線
的方程為
.
(1)當(dāng)直線與圓
相切時(shí),求直線
的方程;
(2)已知直線與圓
相交于
,
兩點(diǎn).
(。┤,求實(shí)數(shù)
的取值范圍;
(ⅱ)直線與直線
相交于點(diǎn)
,直線
,直線
,直線
的斜率分別為
,
,
,
是否存在常數(shù),使得
恒成立?若存在,求出
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量m (sin
,1),
=(1,
cos
),函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)若f(α﹣ )=
,求f(2α+
)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,
.
(I)求 的單調(diào)區(qū)間;
(II)若對(duì)任意的 ,都有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為
,且經(jīng)過(guò)點(diǎn)
是橢圓的左、右焦點(diǎn).
(1)求橢圓 的方程;
(2)點(diǎn) 在橢圓上運(yùn)動(dòng),求
的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com