日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,為圓的直徑,點(diǎn)、在圓上,矩形所在的平面和圓所在的平面互相垂直,且.

          (Ⅰ)求證:平面;
          (Ⅱ)求三棱錐的體積.

          (Ⅰ)利用線線垂直證明線面垂直(Ⅱ)

          解析試題分析:(Ⅰ)平面平面,,
          平面平面,
          平面
          ∵AF在平面內(nèi),∴,      3分
          為圓的直徑,∴
          平面.            6分
          (Ⅱ)由(1)知,
          ∴三棱錐的高是
          ,            8分
          連結(jié)、,可知
          為正三角形,∴正的高是,            10分
          ,        12分
          考點(diǎn):本題考查了空間中的線面關(guān)系
          點(diǎn)評(píng):此類問(wèn)題常考查空間中平行關(guān)系與垂直關(guān)系的證明以及幾何體體積的計(jì)算,這是高考的重點(diǎn)內(nèi)容.證明的關(guān)鍵是熟練掌握并靈活運(yùn)用相關(guān)的判定定理與性質(zhì)定理

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,已知AC⊥平面CDE,BD//AC,△ECD為等邊三角形,F(xiàn)為ED邊的中點(diǎn),CD=BD=2AC=2

          (1)求證:CF∥面ABE;
          (2)求證:面ABE⊥平面BDE:
          (3)求三棱錐F—ABE的體積。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在矩形ABCD中,已知AB=3, AD=1, E、F分別是AB的兩個(gè)三等分點(diǎn),AC,DF相交于點(diǎn)G,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系:

          (1)若動(dòng)點(diǎn)M到D點(diǎn)距離等于它到C點(diǎn)距離的兩倍,求動(dòng)點(diǎn)M的軌跡圍成區(qū)域的面積;
          (2)證明:E G ⊥D F。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖:在三棱錐D-ABC中,已知是正三角形,AB平面BCD,,E為BC的中點(diǎn),F(xiàn)在棱AC上,且

          (1)求三棱錐DABC的表面積;
          (2)求證AC⊥平面DEF;
          (3)若MBD的中點(diǎn),問(wèn)AC上是否存在一點(diǎn)N,使MN∥平面DEF?若存在,說(shuō)明點(diǎn)N的位置;若不存在,試說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在四棱錐中,底面是矩形,分別為的中點(diǎn),,且

          (1)證明:
          (2)求二面角的余弦值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=

          (1)求直線D1B與平面ABCD所成角的大。
          (2)求證:AC⊥平面BB1D1D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          設(shè)為正方形的中心,四邊形是平行四邊形,且平面平面,若.

          (1)求證:平面.
          (2)線段上是否存在一點(diǎn),使平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,三棱錐中,底面,,,點(diǎn)的中點(diǎn).

          (1)求證:側(cè)面平面;
          (2)若異面直線所成的角為,且,
          求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形
          (1)求證:; (2)求證:;
          (3)設(shè)中點(diǎn),在邊上找一點(diǎn),使平面,并求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案