【題目】已知函數(shù),對任意
,都有
.
討論
的單調(diào)性;
當(dāng)
存在三個不同的零點時,求實數(shù)
的取值范圍.
【答案】(1) 當(dāng)時,
在
上單調(diào)遞減;當(dāng)
時,
在
和
上單調(diào)遞減,
在
上單調(diào)遞增.;(2)
【解析】
(1)根據(jù)可得
,得到
,求導(dǎo)后,分別在
和
兩種情況下討論導(dǎo)函數(shù)符號,得到單調(diào)性;(2)根據(jù)(1)中所求單調(diào)性,否定
的情況;在
時,首先求得
為一個零點;再利用零點存在性定理求解出
中存在一個零點
;根據(jù)
,可確定另一個零點
,從而可知
滿足題意.
(1)由,得
則,
若時,即
時,
在
單調(diào)遞減
若,即
時,
有兩個零點
零點為:,
又開口向下
當(dāng)時,
,
,
單調(diào)遞減
當(dāng)時,
,
,
單調(diào)遞增
當(dāng)時,
,
,
單調(diào)遞減
綜上所述,當(dāng)時,
在
上單調(diào)遞減;當(dāng)
時,
在
和
上單調(diào)遞減,
在
上單調(diào)遞增
(2)由(1)知當(dāng)時,
單調(diào)遞減,不可能有三個不同的零點;
當(dāng)時,
在
和
上單調(diào)遞減,
在
上單調(diào)遞增
,又
,有
在
上單調(diào)遞增,
,
令,
令,
單調(diào)遞增
由,求得
當(dāng)時,
單調(diào)遞減,
在
上單調(diào)遞增
故
故,
,
由零點存在性定理知在區(qū)間
有一個根,設(shè)為:
又,得
,
,
是
的另一個零點
故當(dāng)時,
存在三個不同的零點
,
,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省從2021年開始將全面推行新高考制度,新高考“”中的“2”要求考生從政治、化學(xué)、生物、地理四門中選兩科,按照等級賦分計入高考成績,等級賦分規(guī)則如下:從2021年夏季高考開始,高考政治、化學(xué)、生物、地理四門等級考試科目的考生原始成績從高到低劃分為
五個等級,確定各等級人數(shù)所占比例分別為
,
,
,
,
,等級考試科目成績計入考生總成績時,將
至
等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法分別轉(zhuǎn)換到
、
、
、
、
五個分?jǐn)?shù)區(qū)間,得到考生的等級分,等級轉(zhuǎn)換分滿分為100分.具體轉(zhuǎn)換分?jǐn)?shù)區(qū)間如下表:
等級 | |||||
比例 | |||||
賦分區(qū)間 |
而等比例轉(zhuǎn)換法是通過公式計算:
其中,
分別表示原始分區(qū)間的最低分和最高分,
、
分別表示等級分區(qū)間的最低分和最高分,
表示原始分,
表示轉(zhuǎn)換分,當(dāng)原始分為
,
時,等級分分別為
、
假設(shè)小南的化學(xué)考試成績信息如下表:
考生科目 | 考試成績 | 成績等級 | 原始分區(qū)間 | 等級分區(qū)間 |
化學(xué) | 75分 |
|
設(shè)小南轉(zhuǎn)換后的等級成績?yōu)?/span>,根據(jù)公式得:
,
所以(四舍五入取整),小南最終化學(xué)成績?yōu)?7分.
已知某年級學(xué)生有100人選了化學(xué),以半期考試成績?yōu)樵汲煽冝D(zhuǎn)換本年級的化學(xué)等級成績,其中化學(xué)成績獲得等級的學(xué)生原始成績統(tǒng)計如下表:
成績 | 95 | 93 | 91 | 90 | 88 | 87 | 85 |
人數(shù) | 1 | 2 | 3 | 2 | 3 | 2 | 2 |
(1)從化學(xué)成績獲得等級的學(xué)生中任取2名,求恰好有1名同學(xué)的等級成績不小于96分的概率;
(2)從化學(xué)成績獲得等級的學(xué)生中任取5名,設(shè)5名學(xué)生中等級成績不小于96分人數(shù)為
,求
的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓
的離心率為
,直線
被橢圓
截得的線段長為
.
(1)求橢圓的方程;
(2)過原點的直線與橢圓交于
兩點(
不是橢圓
的頂點),點
在橢圓
上,且
,直線
與
軸
軸分別交于
兩點.
①設(shè)直線斜率分別為
,證明存在常數(shù)
使得
,并求出
的值;
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
為自然對數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
平面
,
,
,
,
,
為線段
上的點.
(1)證明: 平面
;
(2)若是
的中點,求
與平面
所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的圖象上存在兩點
,使得
是以
為直角頂點的直角三角形(其中
為坐標(biāo)原點),且斜邊的中點恰好在
軸上,則實數(shù)
的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓
的左右焦點分別為的
、
,離心率為
;過拋物線
焦點
的直線交拋物線于
、
兩點,當(dāng)
時,
點在
軸上的射影為
。連結(jié)
并延長分別交
于
、
兩點,連接
;
與
的面積分別記為
,
,設(shè)
.
(Ⅰ)求橢圓和拋物線
的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com