日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (
          2
          x
          +x)(1-
          x
          )4
          的展開式中x的系數(shù)是
           
          分析:確定(1-
          x
          )4
          的通項,求出x的二次項的系數(shù),常數(shù)項,即可求出(
          2
          x
          +x)(1-
          x
          )4
          的展開式中x的系數(shù).
          解答:解:由(1-
          x
          )4
          可得通項為Tr+1=
          C
          r
          4
          (-
          x
          )r
          ,∴x的二次項的系數(shù)為
          C
          4
          4
          =1,常數(shù)項為1,
          (
          2
          x
          +x)(1-
          x
          )4
          的展開式中x的系數(shù)是2•1+1•1=3.
          故答案為:3.
          點(diǎn)評:本題考查二項式定理的運(yùn)用,考查學(xué)生的計算能力,確定展開式的通項是關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          2x|x|+1
          (x∈R)
          ,區(qū)間M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},則使M=N成立的實數(shù)對(a,b)有
           
          個.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于定義在D上的函數(shù)y=f(x),若同時滿足.
          ①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
          ②對于D內(nèi)任意x2,當(dāng)x2∉[a,b]時總有f(x2)>c稱f(x)為“平底型”函數(shù).
          (1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
          (文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
          (2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對一切t∈R恒成立,求實數(shù)x的范圍;
          (文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實數(shù)x的范圍;
          (3)(理)若F(x)=mx+
          x2+2x+n
          ,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
          (文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(
          x
          -1)=-x
          ,則函數(shù)f(x)的表達(dá)式為( 。
          A、f(x)=x2+2x+1(x≥0)
          B、f(x)=x2+2x+1(x≥-1)
          C、f(x)=-x2-2x-1(x≥0)
          D、f(x)=-x2-2x-1(x≥-1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          函數(shù)f(x)=x2-2x(x≤0)的反函數(shù)是(    )

          A.f-1(x)=1+ (x≥-1)         B.f-1(x)=1- (x≥-1)

          C.f-1(x)=1+ (x≥0)           D.f-1(x)=1-(x≥0)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知函數(shù)f(
          x
          -1)=-x
          ,則函數(shù)f(x)的表達(dá)式為(  )
          A.f(x)=x2+2x+1(x≥0)B.f(x)=x2+2x+1(x≥-1)
          C.f(x)=-x2-2x-1(x≥0)D.f(x)=-x2-2x-1(x≥-1)

          查看答案和解析>>

          同步練習(xí)冊答案