【題目】下列說法正確的是( )
A. “為真”是“
為真”的充分不必要條件;
B. 樣本的標(biāo)準(zhǔn)差是3.3;
C. K2是用來判斷兩個(gè)分類變量是否相關(guān)的隨機(jī)變量,當(dāng)K2的值很小時(shí)可以推定兩類變量不相關(guān);
D. 設(shè)有一個(gè)回歸直線方程為,則變量
每增加一個(gè)單位,
平均減少1.5個(gè)單位.
【答案】D
【解析】逐一分析所給的選項(xiàng):
A,p∧q為真,則p、q均為真,p∨q為真,p、q至少一個(gè)為真,故“p∨q為真”是“p∧q為真”的必要不充分條件,故不正確;
B,樣本10,6,8,5,6的平均數(shù)為7,方差為 ,標(biāo)準(zhǔn)差是
,故不正確;
C,K2的值很小時(shí),只能說兩個(gè)變量的相關(guān)程度低,不能推定兩個(gè)變量不相關(guān)。所以C錯(cuò);
D,設(shè)有一個(gè)回歸直線方程為 ,則變量x毎增加一個(gè)單位,y平均減少1.5個(gè)單位,正確。
本題選擇D選項(xiàng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,圓
的極坐標(biāo)方程是
,直線
的參數(shù)方程是
(
為參數(shù)).
(1)若,
為直線
與
軸的交點(diǎn),
是圓
上一動點(diǎn),求
的最大值;
(2)若直線被圓
截得的弦長為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)若曲線在
處的切線的方程為
,求實(shí)數(shù)
的值;
(2)設(shè),若對任意兩個(gè)不等的正數(shù)
,都有
恒成立,求實(shí)數(shù)
的取值范圍;
(3)若在上存在一點(diǎn)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市一汽車出租公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機(jī)抽取了這兩種車型各100輛,分別統(tǒng)計(jì)了每輛車某個(gè)星期內(nèi)的出租天數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表:
A車型 B車型
出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
車輛數(shù) | 5 | 10 | 30 | 35 | 15 | 3 | 2 | 車輛數(shù) | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
(Ⅰ)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機(jī)抽取一輛,估計(jì)這輛汽車恰好是A型車的概率;
(Ⅱ)根據(jù)這個(gè)星期的統(tǒng)計(jì)數(shù)據(jù),估計(jì)該公司一輛A型車,一輛B型車一周內(nèi)合計(jì)出租天數(shù)恰好為4天的概率;
(Ⅲ)
(ⅰ)試寫出A,B兩種車型的出租天數(shù)的分布列及數(shù)學(xué)期望;
(ⅱ)如果兩種車輛每輛車每天出租獲得的利潤相同,該公司需要從A,B兩種車型中購買一輛(注:兩種車型的采購價(jià)格相當(dāng)),請你根據(jù)所學(xué)的統(tǒng)計(jì)知識,建議應(yīng)該購買哪一種車型,并說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,直角梯形中,
,
,點(diǎn)
分別在
上,且
,
,
,現(xiàn)將梯形
沿
折起,使平面
與平面
垂直(如圖乙).
(Ⅰ)求證: 平面
;
(II)當(dāng)的長為何值時(shí),二面角
的大小為
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求
在區(qū)間
上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),有
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費(fèi),超過200度但不超過400度的部分按0.8元/度收費(fèi),超過400度的部分按1.0元/度收費(fèi).
(1)求某戶居民用電費(fèi)用(單位:元)關(guān)于月用電量
(單位:度)的函數(shù)解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費(fèi)用不超過260元的點(diǎn)80%,求的值;
(3)在滿足(2)的條件下,估計(jì)1月份該市居民用戶平均用電費(fèi)用(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6位選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖.為了增加結(jié)果的神秘感,主持人暫時(shí)沒有公布甲、乙兩班最后一位選手的成績.
(Ⅰ)求乙班總分超過甲班的概率;
(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請你從平均分和方差的角度來分析兩個(gè)班的選手的情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是
,以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(I)寫出直線的一般方程與曲線
的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;
(II)將曲線向左平移
個(gè)單位長度,向上平移
個(gè)單位長度,得到曲線
,設(shè)曲線
經(jīng)過伸縮變換
得到曲線
,設(shè)曲線
上任一點(diǎn)為
,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com