日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知向量, ,設(shè)函數(shù).

          (1)求函數(shù)的最小正周期;

          (2)已知分別為三角形的內(nèi)角對(duì)應(yīng)的三邊長(zhǎng), 為銳角, , ,且恰是函數(shù)上的最大值,求和三角形的面積.

          【答案】1;(2,, .

          【解析】試題分析:本題主要考查平面向量的數(shù)量積、二倍角公式、兩角和的正弦公式、三角函數(shù)、余弦定理、三角形面積等基礎(chǔ)知識(shí),意在考查考生的運(yùn)算求解能力、轉(zhuǎn)化化歸想象能力和數(shù)形結(jié)合能力.第一問(wèn),先利用向量的數(shù)量積得到的解析式,利用降冪公式、倍角公式、兩角和的正弦公式化簡(jiǎn)表達(dá)式,使之化簡(jiǎn)成的形式,利用求函數(shù)的周期;第二問(wèn),先將代入得到的范圍,數(shù)形結(jié)合得到的最大值,并求出此時(shí)的角A,在三角形中利用余弦定理得到邊b的值,最后利用求三角形面積.

          試題解析:(1

          4

          因?yàn)?/span>,所以最小正周期. 6

          2)由(1)知,當(dāng)時(shí),.

          由正弦函數(shù)圖象可知,當(dāng)時(shí), 取得最大值,又為銳角

          所以. 8

          由余弦定理,所以

          經(jīng)檢驗(yàn)均符合題意. 10

          從而當(dāng)時(shí),的面積; 11

          當(dāng)時(shí),. 12

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

          甲說(shuō):“是作品獲得一等獎(jiǎng)”;

          乙說(shuō):“作品獲得一等獎(jiǎng)”;

          丙說(shuō):“兩項(xiàng)作品未獲得一等獎(jiǎng)”;

          丁說(shuō):“是作品獲得一等獎(jiǎng)”.

          若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如果方程cos2x-sinx+a=0在(0,]上有解,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且滿足asinA-csinC=b(sinA-sinB).

          (Ⅰ)求角C的大。

          (Ⅱ)若邊長(zhǎng)c=4,求△ABC的周長(zhǎng)最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,BC邊上的中線AD長(zhǎng)為3,且BD=2,sinB=

          (Ⅰ)求sin∠BAD的值;

          (Ⅱ)求AC的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)

          (1)求函數(shù)g(x)的極大值;

          (2)求證:1++…+>ln(n+1)(n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】是否存在實(shí)數(shù)a,使得函數(shù)y=sin2x+acosx+a-在閉區(qū)間[0,]上的最大值是1?若存在,則求出對(duì)應(yīng)的a的值;若不存在,則說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖: 所在平面外一點(diǎn), , , , 平面.求證:

          (1)的垂心;

          (2)為銳角三角形.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本小題13)已知函數(shù)f(x) (a>0x>0)

          (1)求證:f(x)(0,+∞)上是單調(diào)遞增函數(shù);

          (2)f(x)[,2]上的值域是[2],求a的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案