日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在等腰直角△ABC中,AC=BC,D在AB邊上且滿(mǎn)足: ,若∠ACD=60°,則t的值為(
          A.
          B.
          C.
          D.

          【答案】A
          【解析】解:∵ , ∴A,B,D三點(diǎn)共線,
          ∴由題意建立如圖所示坐標(biāo)系,

          設(shè)AC=BC=1,
          則C(0,0),A(1,0),B(0,1),
          直線AB的方程為x+y=1,
          直線CD的方程為y= x,
          故聯(lián)立解得,x= ,y=
          故D( , ),
          =( ), =(1,0), =(0,1),
          故t +(1﹣t) =(t,1﹣t),
          故( )=(t,1﹣t),
          故t= ,
          故選:A.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面向量的基本定理及其意義的相關(guān)知識(shí),掌握如果是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)、,使

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,cos = ,且acosB+bcosA=2,則△ABC的面積的最大值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2011年,國(guó)際數(shù)學(xué)協(xié)會(huì)正式宣布,將每年的3月14日設(shè)為國(guó)際數(shù)學(xué)節(jié),來(lái)源是中國(guó)古代數(shù)學(xué)家祖沖之的圓周率.為慶祝該節(jié)日,某校舉辦的數(shù)學(xué)嘉年華活動(dòng)中,設(shè)計(jì)了一個(gè)有獎(jiǎng)闖關(guān)游戲,游戲分為兩個(gè)環(huán)節(jié). 第一環(huán)節(jié)“解鎖”:給定6個(gè)密碼,只有一個(gè)正確,參賽選手從6個(gè)密碼中任選一個(gè)輸入,每人最多可輸三次,若密碼正確,則解鎖成功,該選手進(jìn)入第二個(gè)環(huán)節(jié),否則直接淘汰.
          第二環(huán)節(jié)“闖關(guān)”:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,分別獲得10個(gè)、20個(gè)、30個(gè)學(xué)豆的獎(jiǎng)勵(lì),游戲還規(guī)定,當(dāng)選手闖過(guò)一關(guān)后,可以選擇帶走相應(yīng)的學(xué)豆,結(jié)束游戲,也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒(méi)有闖關(guān)成功,則全部學(xué)豆歸零,游戲結(jié)束.設(shè)選手甲能闖過(guò)第一關(guān)、第二關(guān)、第三關(guān)的概率分別為 ,選手選擇繼續(xù)闖關(guān)的概率均為 ,且各關(guān)之間闖關(guān)成功與否互不影響.
          (1)求某參賽選手能進(jìn)入第二環(huán)節(jié)的概率;
          (2)設(shè)選手甲在第二環(huán)節(jié)中所得學(xué)豆總數(shù)為X,求X的分布列和期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)F(x)=xf(x),f(x)滿(mǎn)足f(x)=f(﹣x),且當(dāng)x∈(﹣∞,0]時(shí),F(xiàn)'(x)<0成立,若 ,則a,b,c的大小關(guān)系是(
          A.a>b>c
          B.c>a>b
          C.c>b>a
          D.a>c>b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|.
          (1)若a≤2,解不等式f(x)≥2;
          (2)若a>1,x∈R,f(x)+|x﹣1|≥1,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠ABC=120°.點(diǎn)E是棱PC的中點(diǎn),平面ABE與棱PD交于點(diǎn)F. (Ⅰ)求證:AB∥EF;
          (Ⅱ)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求平面PAF與平面AEF所成的二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將三項(xiàng)式(x2+x+1)n展開(kāi),當(dāng)n=0,1,2,3,…時(shí),得到以下等式: (x2+x+1)0=1
          (x2+x+1)1=x2+x+1
          (x2+x+1)2=x4+2x3+3x2+2x+1
          (x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1

          觀察多項(xiàng)式系數(shù)之間的關(guān)系,可以仿照楊輝三角構(gòu)造如圖所示的廣義楊輝三角形,其構(gòu)造方法為:第0行為1,以下各行每個(gè)數(shù)是它頭上與左右兩肩上3數(shù)(不足3數(shù)的,缺少的數(shù)計(jì)為0)之和,第k行共有2k+1個(gè)數(shù).若在(1+ax)(x2+x+1)5的展開(kāi)式中,x7項(xiàng)的系數(shù)為75,則實(shí)數(shù)a的值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為 (t為參數(shù),a>0)以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為
          (Ⅰ)設(shè)P是曲線C上的一個(gè)動(dòng)點(diǎn),當(dāng)a=2時(shí),求點(diǎn)P到直線l的距離的最小值;
          (Ⅱ)若曲線C上的所有點(diǎn)均在直線l的右下方,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸為極軸建立極坐標(biāo)系,曲線C1的方程為 (θ為參數(shù)),曲線C2的極坐標(biāo)方程為C2:ρcosθ+ρsinθ=1,若曲線C1與C2相交于A、B兩點(diǎn).
          (1)求|AB|的值;
          (2)求點(diǎn)M(﹣1,2)到A、B兩點(diǎn)的距離之積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案