日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知?jiǎng)狱c(diǎn)P與雙曲線x2-y2=1的兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離之和為定值,且cos∠F1PF2的最小值為-
          13

          (1)求動(dòng)點(diǎn)P的軌跡方程;
          (2)設(shè)M(0,-1),若斜率為k(k≠0)的直線l與P點(diǎn)的軌跡交于不同的兩點(diǎn)A、B,若要使|MA|=|MB|,試求k的取值范圍.
          分析:(1)根據(jù)橢圓定義可知,所求動(dòng)點(diǎn)P的軌跡為以F1,F(xiàn)2為焦點(diǎn)的橢圓,再結(jié)合余弦定理求出橢圓中的a,b的值即可.
          (2)設(shè)出A,B點(diǎn)的坐標(biāo),以及直線AB的方程,將直線的方程代入橢圓的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用斜率公式及根的判別式即可求得k的取值范圍,從而解決問題.
          解答:解:(1)∵x2-y2=1,∴c=
          2
          .設(shè)|PF1|+|PF2|=2a(常數(shù)a>0),2a>2c=2
          2
          ,∴a>
          2

          由余弦定理有cos∠F1PF2=
          |PF1|2+|PF2|2-|F1F2|2
          2|PF1||PF2|
          =
          (|PF1|+|PF2|)2-2|PF1||PF2|-|F1F2|2
          2|PF1||PF2|
          =
          2a2-4
          |PF1||PF2|
          -1
          ∵|PF1||PF2|≤(
          |PF1|+|PF2|
          2
          2=a2,∴當(dāng)且僅當(dāng)|PF1|=|PF2|時(shí),|PF1||PF2|取得最大值a2
          此時(shí)cos∠F1PF2取得最小值
          2a2-4
          a2
          -1,由題意
          2a2-4
          a2
          -1=-
          1
          3
          ,解得a2=3,∴b2=a2-c2=3-2=1
          ①②
          ∴P點(diǎn)的軌跡方程為
          x2
          3
          +y2=1.
          (2)設(shè)l:y=kx+m(k≠0),則由,
          x2
          3
          +y2=1
          y=kx+m
          將②代入①得:(1+3k2)x2+6kmx+3(m2-1)=0  (*)
          設(shè)A(x1,y1),B(x2,y2),則AB中點(diǎn)Q(x0,y0)的坐標(biāo)滿足:x0=
          x1+x2
          2
          =
          -3km
          1+3k2
          ,y0=kx0+m=
          m
          1+3k2

          即Q(-
          3km
          1+3k2
          ,
          m
          1+3k2
          )∵|MA|=|MB|,∴M在AB的中垂線上,
          ∴klkAQ=k•
          m
          1+3k2
          -
          3km
          1+3k2
          =-1,解得m=
          1+3k2
          2
           …③又由于(*)式有兩個(gè)實(shí)數(shù)根,知△>0,
          即 (6km)2-4(1+3k2)[3(m2-1)]=12(1+3k2-m2)>0  ④,將③代入④得
          12[1+3k2-(
          1+3k2
          2
          2]>0,解得-1<k<1,由k≠0,∴k的取值范圍是k∈(-1,0)∪(0,1).
          點(diǎn)評(píng):本體考查了定義法求軌跡方程,以及直線與圓位置關(guān)系的應(yīng)用.關(guān)鍵是看清題中給出的條件,靈活運(yùn)用韋達(dá)定理進(jìn)行求解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知?jiǎng)狱c(diǎn)P的軌跡方程為:
          x2
          4
          -
          y2
          5
          =1(x>2),O是坐標(biāo)原點(diǎn).
          ①若直線x-my-3=0截動(dòng)點(diǎn)P的軌跡所得弦長(zhǎng)為5,求實(shí)數(shù)m的值;
          ②設(shè)過P的軌跡上的點(diǎn)P的直線與該雙曲線的兩漸近線分別交于點(diǎn)P1、P2,且點(diǎn)P分有向線段
          P1P2
          所成的比為λ(λ>0),當(dāng)λ∈[
          3
          4
          ,
          3
          2
          ]時(shí),求|
          OP1
          |•|
          OP2
          |的最值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高二版(A選修1-1) 2009-2010學(xué)年 第18期 總第174期 人教課標(biāo)版(A選修1-1) 題型:044

          已知雙曲線C以y=0為漸近線,且過點(diǎn)A(3,2).

          (1)求雙曲線C的標(biāo)準(zhǔn)方程;

          (2)已知?jiǎng)狱c(diǎn)P與雙曲線C的兩個(gè)焦點(diǎn)所連線段長(zhǎng)的和為6,求動(dòng)點(diǎn)P的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)版高二(A選修2-1) 2009-2010學(xué)年 第18期 總第174期 人教課標(biāo)版(A選修2-1) 題型:044

          已知雙曲線C以y=0為漸近線,且過點(diǎn)A(3,2).

          (1)求雙曲線C的標(biāo)準(zhǔn)方程;

          (2)已知?jiǎng)狱c(diǎn)P與雙曲線C的兩個(gè)焦點(diǎn)所連線段長(zhǎng)的和為6,求動(dòng)點(diǎn)P的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過原點(diǎn)與點(diǎn)(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點(diǎn)的交點(diǎn)

          ⑴.已知a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo)。

          ⑵.已知點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點(diǎn)Q落在雙曲線4x2-4y2=1上。

          ⑶.已知?jiǎng)狱c(diǎn)P(a,b)滿足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對(duì)稱的拋物線上,試問動(dòng)點(diǎn)P的軌跡落在哪種二次曲線上,并說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (上海卷理20)設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過原點(diǎn)與點(diǎn)(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點(diǎn)的交點(diǎn)

          ⑴已知a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo).

          ⑵已知點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點(diǎn)Q落在雙曲線4x2-4y2=1上.

          ⑶已知?jiǎng)狱c(diǎn)P(a,b)滿足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對(duì)稱的拋物線上,試問動(dòng)點(diǎn)P的軌跡落在哪種二次曲線上,并說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案