日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與

          輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時停止.設(shè)在每局中參賽者勝負(fù)的概率均為,且各局勝負(fù)相互獨(dú)立,求:

          (1)打滿3局比賽還未停止的概率;

          (2)比賽停止時已打局?jǐn)?shù)ξ的分布列與期望E(ξ).

          【答案】見解析

          【解析】令A(yù)k,Bk,Ck分別表示甲、乙、丙在第k局中獲勝.

          (1)由獨(dú)立事件同時發(fā)生與互斥事件至少有一個發(fā)生的概率公式知,打滿3局比賽還未停止的概率為P(A1C2B3)+P(B1C2A3)=.

          (2)ξ的所有可能值有2,3,4,5,6,且

          P(ξ=2)=P(A1A2)+P(B1B2)=,

          P(ξ=3)=P(A1C2C3)+P(B1C2C3)=,

          P(ξ=4)=P(A1C2B3B4)+P(B1C2A3A4)=,

          P(ξ=5)=P(A1C2B3A4A5)+P(B1C2A3B4B5)=

          P(ξ=6)=P(A1C2B3A4C5)+P(B1C2A3B4C5)=.

          故ξ的分布列為:

          ξ

          2

          3

          4

          5

          6

          P

          從而E(ξ)=2×+3×+4×+5×+6×.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地政府鑒于某種日常食品價格增長過快,欲將這種食品價格控制在適當(dāng)范圍內(nèi),決定對這種食品生產(chǎn)廠家提供政府補(bǔ)貼,設(shè)這種食品的市場價格為x元/千克,政府補(bǔ)貼為t元/千克,根據(jù)市場調(diào)查,當(dāng)16≤x≤24時,這種食品市場日供應(yīng)量p萬千克與市場日需求量q萬千克近似地滿足關(guān)系:p=2(x+4t-14)(x≥16,t≥0),q=24+8ln (16≤x≤24).當(dāng)p=q時的市場價格稱為市場平衡價格.

          (1)將政府補(bǔ)貼表示為市場平衡價格的函數(shù),并求出函數(shù)的值域.

          (2)為使市場平衡價格不高于每千克20元,政府補(bǔ)貼至少為每千克多少元?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,側(cè)面底面,為正三角形,,,點(diǎn),分別為線段的中點(diǎn),、分別為線段、上一點(diǎn),且,.

          (1)確定點(diǎn)的位置,使得平面;

          (2)點(diǎn)為線段上一點(diǎn),且,若平面將四棱錐分成體積相等的兩部分,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          (1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個數(shù);

          (2)設(shè),若不等式對任意恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地

          區(qū)調(diào)查了500位老年人,結(jié)果如下:

          需要

          40

          30

          不需要

          160

          270

          (1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

          (2)能否在犯錯誤的概率不超過0.01的前提下認(rèn)為該地區(qū)的老年人需要志愿者提供幫助與性別有

          關(guān)?

          附:

          P(K2k)

          0.050

          0.010

          0.001

          k

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市居民用水原價為2.25元/立方米,從2010年1月1日起實(shí)行階梯式計價:

          級數(shù)

          計算水費(fèi)的用水量/立方米

          單價/(元/立方米)

          1

          不超過20立方米

          1.8

          2

          超過20立方米30立方米

          2.4

          3

          超過30立方米

          p

          其中p是用水總量的一次函數(shù),已知用水總量為40立方米時p=3.0元/立方米,用水總量為50立方米時p=3.5元/立方米.

          (1)寫出水價調(diào)整后居民每月水費(fèi)額與用水量的函數(shù)關(guān)系式.每月用水量在什么范圍內(nèi),水價調(diào)整后居民同等用水的水費(fèi)比調(diào)整前增加?

          (2)用一個流程圖描述水價調(diào)整后計算水費(fèi)的主要步驟.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)是正比例函數(shù),函數(shù)g(x)是反比例函數(shù)f(1)=1,g(1)=2.

          (1)求函數(shù)f(x)g(x);

          (2)判斷函數(shù)f(x)+g(x)的奇偶性;

          (3)求函數(shù)f(x)+g(x)(0,]上的最小值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè), .

          (1)若,證明: 時, 成立;

          (2)討論函數(shù)的單調(diào)性;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng)時,求函數(shù)上的最大值;

          (2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

          (3)當(dāng)時,函數(shù)的圖象與軸交于兩點(diǎn),又的導(dǎo)函數(shù).若正常數(shù)滿足條件.證明:<0.

          查看答案和解析>>

          同步練習(xí)冊答案