日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=x+ ,且函數(shù)y=f(x)的圖像經(jīng)過點(diǎn)(1,2).
          (1)求m的值;
          (2)判斷函數(shù)的奇偶性并加以證明;
          (3)證明:函數(shù)f(x)在(1,+∞)上是增函數(shù).

          【答案】
          (1)解:由函數(shù)f(x)=x+ 的圖像過點(diǎn)(1,2),

          得2=1+ ,

          解得m=1


          (2)解:由(1)知,f(x)=x+ ,

          定義域為(﹣∞,0)∪(0,+∞)具有對稱性,

          且f(﹣x)=﹣x+ =﹣(x+ )=﹣f(x),

          所以f(x)為奇函數(shù)


          (3)證明:設(shè)1<x1<x2,則

          f(x1)﹣f(x2)= =

          ∵x1﹣x2<0,x1x2﹣1>0,x1x2>0,

          ∴f(x1)<f(x2),

          ∴函數(shù)y=f(x)在(1,+∞)上為增函數(shù)


          【解析】(1)由函數(shù)f(x)圖像過點(diǎn)(1,2),代入解析式求出m的值;(2)利用奇偶性的定義判斷f(x)為定義域上的奇函數(shù);(3)利用單調(diào)性的定義可證明f(x)在(1,+∞)上為增函數(shù).
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)單調(diào)性的判斷方法(單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較),還要掌握函數(shù)的奇偶性(偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱)的相關(guān)知識才是答題的關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          ⑴求函數(shù)的單調(diào)區(qū)間;

          ⑵如果對于任意的, 恒成立,求實數(shù)的取值范圍;

          ⑶設(shè)函數(shù) .過點(diǎn)作函數(shù)的圖象

          的所有切線,令各切點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列,求數(shù)列的所有項之和的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)
          (1)當(dāng)a<0時,判斷f(x)在(0,+∞)上的單調(diào)性;
          (2)當(dāng)a=﹣4時,對任意的實數(shù)x1 , x2∈[1,2],都有f(x1)≤g(x2),求實數(shù)m的取值范圍;
          (3)當(dāng) , ,y=|F(x)|在(0,1)上單調(diào)遞減,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的離心率,且過點(diǎn)

          (1)求橢圓的方程;

          (2)如圖,過橢圓的右焦點(diǎn)作兩條相互垂直的直線交橢圓分別于,且滿足, ,求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如甲圖所示,在矩形中, , 的中點(diǎn),將沿折起到位置,使平面平面,得到乙圖所示的四棱錐

          求證: 平面;

          求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)全集U={(x,y)|x,y∈R},集合M={(x,y)| =1},N={(x,y)|y=x+1},則N∩(UM)等于(
          A.
          B.{(2,3)}
          C.(2,3)
          D.{(x,y)|y=x+1}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          (Ⅰ)討論函數(shù)的單調(diào)性;

          )若函數(shù)有兩個極值點(diǎn),,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某同學(xué)在研究性學(xué)習(xí)中,收集到某制藥廠今年前5個月甲膠囊生產(chǎn)產(chǎn)量(單位:萬盒)的數(shù)據(jù)如下表所示:

          (月份)

          1

          2

          3

          4

          5

          (萬盒)

          1

          4

          5

          6

          6

          (1)該同學(xué)為了求出關(guān)于的線性回歸方程,根據(jù)表中數(shù)據(jù)已經(jīng)正確計算出,試求出的值,并估計該廠6月份生產(chǎn)的甲膠囊產(chǎn)量數(shù);

          (2)若某藥店現(xiàn)有該制藥廠今年二月份生產(chǎn)的甲膠囊4盒和三月份生產(chǎn)的甲膠囊5盒,小紅同學(xué)從中隨機(jī)購買了3盒甲膠囊.后經(jīng)了解發(fā)現(xiàn)該制藥廠今年二月份生產(chǎn)的所有甲膠囊均存在質(zhì)量問題.記小紅同學(xué)所購買的3盒甲膠囊中存在質(zhì)量問題的盒數(shù)為,求的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩種不同規(guī)格的產(chǎn)品,其質(zhì)量按測試指標(biāo)分?jǐn)?shù)進(jìn)行劃分,其中分?jǐn)?shù)不小于82分的為合格品,否則為次品.現(xiàn)隨機(jī)抽取兩種產(chǎn)品各100件進(jìn)行檢測,其結(jié)果如下:

          測試指標(biāo)分?jǐn)?shù)

          甲產(chǎn)品

          8

          12

          40

          32

          8

          乙產(chǎn)品

          7

          18

          40

          29

          6

          (1)根據(jù)以上數(shù)據(jù),完成下面的 列聯(lián)表,并判斷是否有 的有把握認(rèn)為兩種產(chǎn)品的質(zhì)量有明顯差異?

          甲產(chǎn)品

          乙產(chǎn)品

          合計

          合格品

          次品

          合計

          (2)已知生產(chǎn)1件甲產(chǎn)品,若為合格品,則可盈利40元,若為次品,則虧損5元;生產(chǎn)1件乙產(chǎn)品,若為合格品,則可盈利50元,若為次品,則虧損10元.記 為生產(chǎn)1件甲產(chǎn)品和1件乙產(chǎn)品所得的總利潤,求隨機(jī)變量的分布列和數(shù)學(xué)期望(將產(chǎn)品的合格率作為抽檢一件這種產(chǎn)品為合格品的概率).

          附:

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.702

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          同步練習(xí)冊答案