已知圓的圓心在坐標原點
,且恰好與直線
相切,設點A為圓上一動點,
軸于點
,且動點
滿足
,設動點
的軌跡為曲線
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.
(1) ;(2)
解析試題分析:(1)此題考察軌跡方程,考察代入法的習題,根據(jù)圓心到直線的距離等于半徑,可以求出圓的半徑,即知道圓的方程
,設動點
,
,
,利用公式
,寫出向量相等的坐標表示,利用
,代入,得到關于
的方程;
(2)利用直線方程與橢圓方程聯(lián)立,和點到直線的距離公式,得出面積,并求出最大值.
(1)設動點,
因為
軸于
,所以
,
設圓的方程為
,由題意得
, 所以圓
的程為
.
由題意,,所以
,
所以即
將代入圓
,得動點
的軌跡方程
(2)由題意可設直線,設直線
與橢圓
交于
,
聯(lián)立方程得
,
,解得
,
,
又因為點到直線
的距離
,
.(當且僅當
即
時取到最大值)
面積的最大值為
.
考點:1.代入法求軌跡方程;2.直線方程與圓錐曲線聯(lián)立;3.弦長公式.
科目:高中數(shù)學 來源: 題型:解答題
(滿分14分)如圖在平面直角坐標系中,
分別是橢圓
的左右焦點,頂點
的坐標是
,連接
并延長交橢圓于點
,過點
作
軸的垂線交橢圓于另一點
,連接
.
(1)若點的坐標為
,且
,求橢圓的方程;
(2)若,求橢圓離心率
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線的焦點
到準線的距離為
.過點
作直線交拋物線
與
兩點(
在第一象限內(nèi)).
(1)若與焦點
重合,且
.求直線
的方程;
(2)設關于
軸的對稱點為
.直線
交
軸于
. 且
.求點
到直線
的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點是橢圓
上任一點,點
到直線
的距離為
,到點
的距離為
,且
.直線
與橢圓
交于不同兩點
、
(
,
都在
軸上方) ,且
.
(1)求橢圓的方程;
(2)當為橢圓與
軸正半軸的交點時,求直線
方程;
(3)對于動直線,是否存在一個定點,無論
如何變化,直線
總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)(2011•重慶)如圖,橢圓的中心為原點0,離心率e=,一條準線的方程是x=2
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設動點P滿足:=
+2
,其中M、N是橢圓上的點,直線OM與ON的斜率之積為﹣
,
問:是否存在定點F,使得|PF|與點P到直線l:x=2的距離之比為定值;若存在,求F的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓:
的左頂點為
,直線
交橢圓
于
兩點(
上
下),動點
和定點
都在橢圓
上.
(1)求橢圓方程及四邊形的面積.
(2)若四邊形為梯形,求點
的坐標.
(3)若為實數(shù),
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,是拋物線為
上的一點,以S為圓心,r為半徑(
)做圓,分別交x軸于A,B兩點,連結(jié)并延長SA、SB,分別交拋物線于C、D兩點。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負半軸于點E,若EC : ED =" 1" : 3,求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線C:離心率是
,過點
,且右支上的弦
過右焦點
.
(1)求雙曲線C的方程;
(2)求弦的中點
的軌跡E的方程;
(3)是否存在以為直徑的圓過原點O?,若存在,求出直線
的斜率k 的值.若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知、
為橢圓
的左右焦點,點
為其上一點,且有
.
(1)求橢圓的標準方程;
(2)過的直線
與橢圓
交于
、
兩點,過
與
平行的直線
與橢圓
交于
、
兩點,求四邊形
的面積
的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com