【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn=1(n∈N),數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1=
,而b2,b5,ba14成等比數(shù)列.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.
【答案】(1),
;(2)
【解析】分析:(I)Sn=1(n∈N),n≥2時(shí),Sn﹣1+
an﹣1=1,相減可得:an
﹣
an﹣1=0,化為:an=
an﹣1.利用等比數(shù)列的通項(xiàng)公式可得an.?dāng)?shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1=
=1.由b2,b5,b14成等比數(shù)列.可得
=b2b14,(1+4d)2=(1+d)(1+13d),d≠0.解得d.即可得出;(Ⅱ)設(shè)cn=anbn=
,利用錯(cuò)位相減法即可得出.
詳解:
(1)Sn=1(n∈N),n≥2時(shí),Sn﹣1+
an﹣1=1,相減可得:an
﹣
an﹣1=0,化為:an=
an﹣1.
n=1時(shí),a1+=1,解得a1=
.
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)為,公比為
.∴an=
=2×
.
數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1==1.
∵b2,b5,b14成等比數(shù)列.∴=b2b14,
∴(1+4d)2=(1+d)(1+13d),d≠0.解得d=2.∴bn=1+2(n﹣1)=2n﹣1.
(2)設(shè)cn=anbn=.
求數(shù)列{cn}的前n項(xiàng)和Tn=+……+
.
=
+……+
+
,
相減可得:Tn=
+4
﹣
=
+4×
﹣
,
化為:Tn=2﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是圓
上任意一點(diǎn),過
作
軸的垂線段
,
為垂足.當(dāng)點(diǎn)
在圓
上運(yùn)動(dòng)時(shí),線段
中點(diǎn)
的軌跡為曲線
(包括點(diǎn)
和點(diǎn)
),
為坐標(biāo)原點(diǎn).
(Ⅰ)求曲線的方程;
(Ⅱ)直線與曲線
相切,且
與圓
相交于
兩點(diǎn),當(dāng)
的面積最大時(shí),試求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
(1)當(dāng)時(shí),求函數(shù)
在
處的切線方程;
(2)若函數(shù)在定義域上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)若對(duì)任意恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生研究學(xué)習(xí)小組發(fā)現(xiàn),學(xué)生上課的注意力指標(biāo)隨著聽課時(shí)間的變化而變化,老師講課開始時(shí),學(xué)生的興趣激增;接下來學(xué)生的興趣將保持較理想的狀態(tài)一段時(shí)間,隨后學(xué)生的注意力開始分散.設(shè)表示學(xué)生注意力指標(biāo).
該小組發(fā)現(xiàn)隨時(shí)間
(分鐘)的變化規(guī)律(
越大,表明學(xué)生的注意力越集中)如下:
(
且
).
若上課后第分鐘時(shí)的注意力指標(biāo)為
,回答下列問題:
()求
的值.
()上課后第
分鐘和下課前
分鐘比較,哪個(gè)時(shí)間注意力更集中?并請(qǐng)說明理由.
()在一節(jié)課中,學(xué)生的注意力指標(biāo)至少達(dá)到
的時(shí)間能保持多長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方體ABCD-A1B1C1D1中,AB=3,BC=2,CC1=5,E是棱CC1上不同于端點(diǎn)的點(diǎn),且.
(1) 當(dāng)∠BEA1為鈍角時(shí),求實(shí)數(shù)λ的取值范圍;
(2) 若λ=,記二面角B1-A1B-E的的大小為θ,求|cosθ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的右準(zhǔn)線
的方程為
,焦距為
.
(1)求橢圓的方程;
(2)過定點(diǎn)作直線
與橢圓
交于點(diǎn)
(異于橢圓
的左、右頂點(diǎn)
)兩點(diǎn),設(shè)直線
與直線
相交于點(diǎn)
.
①若,試求點(diǎn)
的坐標(biāo);
②求證:點(diǎn)始終在一條直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合,且兩個(gè)坐標(biāo)系的單位長度相同.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為
.
(Ⅰ)若直線l的斜率為-1,求直線l與曲線C交點(diǎn)的極坐標(biāo);
(Ⅱ)若直線l與曲線C相交弦長為,求直線l的參數(shù)方程(標(biāo)準(zhǔn)形式).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: 的左焦點(diǎn)為
,且過點(diǎn)
.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線與橢圓E交于
兩點(diǎn),與
的交點(diǎn)為
,且滿足.
①若,求:
的值;
②設(shè)點(diǎn)是橢圓E的左頂點(diǎn),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為點(diǎn)
,試探究:在線段
上是否存在一個(gè)定點(diǎn)
,使得直線
過定點(diǎn)
,如果存在,求出點(diǎn)
的坐標(biāo);如果不存在,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com